local hopf bifurcation
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 31 (08) ◽  
pp. 2150114
Author(s):  
Ming Liu ◽  
Jun Cao ◽  
Xiaofeng Xu

In this paper, the dynamics of a phytoplankton–zooplankton system with delay and diffusion are investigated. The positivity and persistence are studied by using the comparison theorem and upper and lower solutions method. The stability of steady states and the existence of local Hopf bifurcation are obtained by analyzing the distribution of eigenvalues. And the global existence of positive periodic solutions is established by using the global Hopf bifurcation result given by Wu [1996]. Finally, some numerical simulations are carried out to illustrate the analytical results.


2021 ◽  
Vol 6 (11) ◽  
pp. 12225-12244
Author(s):  
Luoyi Wu ◽  
◽  
Hang Zheng ◽  

<abstract><p>In this paper, a delayed predator-prey system with additional food and asymmetric functional response is investigated. We discuss the local stability of equilibria and the existence of local Hopf bifurcation under the influence of the time delay. By using the normal form theory and center manifold theorem, the explicit formulas which determine the properties of bifurcating periodic solutions are obtained. Further, we prove that global periodic solutions exist after the second critical value of delay via Wu's theory. Finally, the correctness of the previous theoretical analysis is demonstrated by some numerical cases.</p></abstract>


2020 ◽  
Vol 30 (16) ◽  
pp. 2050244
Author(s):  
Xin Zhang ◽  
Renxiang Shi ◽  
Ruizhi Yang ◽  
Zhangzhi Wei

This work investigates a prey–predator model with Beddington–DeAngelis functional response and discrete time delay in both theoretical and numerical ways. Firstly, we incorporate into the system a discrete time delay between the capture of the prey by the predator and its conversion to predator biomass. Moreover, by taking the delay as a bifurcation parameter, we analyze the stability of the positive equilibrium in the delayed system. We analytically prove that the local Hopf bifurcation critical values are neatly paired, and each pair is joined by a bounded global Hopf branch. Also, we show that the predator becomes extinct with an increase of the time delay. Finally, before the extinction of the predator, we find the abundance of dynamical complexity, such as supercritical Hopf bifurcation, using the numerical continuation package DDE-BIFTOOL.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tongqian Zhang ◽  
Junling Wang ◽  
Yi Song ◽  
Zhichao Jiang

In this paper, a delayed viral dynamical model that considers two different transmission methods of the virus and apoptosis of bystander cells is proposed and investigated. The basic reproductive number R0 of the model is derived. Based on the basic reproductive number, we prove that the disease-free equilibrium E0 is globally asymptotically stable for R0<1 by constructing suitable Lyapunov functional. For R0>1, by regarding the time delay as bifurcation parameter, the existence of local Hopf bifurcation is investigated. The results show that time delay can change the stability of endemic equilibrium and cause periodic oscillations. Finally, we give some numerical simulations to illustrate the theoretical findings.


2020 ◽  
Vol 30 (03) ◽  
pp. 2050039
Author(s):  
Zhichao Jiang ◽  
Jiangtao Dai ◽  
Tongqian Zhang

In this paper, the system of describing the interactions between poisonous phytoplankton and zooplankton is presented. It focuses on the effects of two delays on the dynamic behavior of the system. At first, the properties of solutions including positivity and boundedness are given. Next, the stability of equilibria and the existence of local Hopf bifurcation are established when delays change and cross some threshold values. Especially, the existence of global periodic solutions is discussed when the two delays are equal. Furthermore, the implicit algorithm is derived for deciding the properties of the branching periodic solutions by using center manifold theory. Some numerical simulations are performed for supporting the theoretical results. Finally, some conclusions are given.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Tongqian Zhang ◽  
Junling Wang ◽  
Yuqing Li ◽  
Zhichao Jiang ◽  
Xiaofeng Han

AbstractIn this paper, a delayed virus model with two different transmission methods and treatments is investigated. This model is a time-delayed version of the model in (Zhang et al. in Comput. Math. Methods Med. 2015:758362, 2015). We show that the virus-free equilibrium is locally asymptotically stable if the basic reproduction number is smaller than one, and by regarding the time delay as a bifurcation parameter, the existence of local Hopf bifurcation is investigated. The results show that time delay can change the stability of the endemic equilibrium. Finally, we give some numerical simulations to illustrate the theoretical findings.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4619 ◽  
Author(s):  
Kaiyuan Zhao ◽  
Qichang Zhang ◽  
Wei Wang

A square cylinder with a V-shaped groove on the windward side in the piezoelectric cantilever flow-induced vibration energy harvester (FIVEH) is presented to improve the output power of the energy harvester and reduce the critical velocity of the system, aiming at the self-powered supply of low energy consumption devices in the natural environment with low wind speed. Seven groups of galloping piezoelectric energy harvesters (GPEHs) were designed and tested in a wind tunnel by gradually changing the angle of two symmetrical sharp angles of the V-groove. The GPEH with a sharp angle of 45° was selected as the optimal energy harvester. Its output power was 61% more than the GPEH without the V-shaped groove. The more accurate mathematical model was made by using the sparse identification method to calculate the empirical parameters of fluid based on the experimental data and the theoretical model. The critical velocity of the galloping system was calculated by analyzing the local Hopf bifurcation of the model. The minimum critical velocity was 2.53 m/s smaller than the maximum critical velocity at 4.69 m/s. These results make the GPEH with a V-shaped groove (GPEH-V) more suitable to harvest wind energy efficiently in a low wind speed environment.


2018 ◽  
Vol 28 (13) ◽  
pp. 1850162 ◽  
Author(s):  
Zhichao Jiang ◽  
Wenzhi Zhang ◽  
Jing Zhang ◽  
Tongqian Zhang

A toxin-producing phytoplankton and zooplankton system is investigated. Considering that zooplankton can be harvested for food in some bodies of water, the harvesting term is introduced to zooplankton population. Firstly, from the ordinary differential equation (ODE) system, we obtain the global asymptotic stability of equilibrium and optimal capture problem. Secondly, based on the ODE system, the diffusion term is introduced and the global asymptotic stability of the steady state solution is obtained. As a result, the diffusion cannot affect the global asymptotic stability of equilibrium, and Turing instability cannot occur. Once again, a delayed differential equation (DDE) system is put forward. The global asymptotic stability of boundary equilibrium and the existence of local Hopf bifurcation at positive equilibrium are discussed. Furthermore, it is proved that there exists at least one positive periodic solution as delay varies in some region by using the global Hopf result of Wu for functional differential equations. Lastly, some numerical simulations are carried out for supporting the theoretical analyses and the positive impacts of harvesting effort, and the release rate of toxin is given. The unstable interval of the positive equilibrium becomes smaller and smaller with the increase of harvesting effort or the release rate of toxin.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Xin-You Meng ◽  
Jiao-Guo Wang ◽  
Hai-Feng Huo

In this paper, a Holling type IV nutrient-plankton model with time delay and linear plankton harvesting is investigated. The existence and local stability of all equilibria of model without time delay are given. Regarding time delay as bifurcation parameter, such system around the interior equilibrium loses its local stability, and Hopf bifurcation occurs when time delay crosses its critical value. In addition, the properties of the bifurcating periodic solutions are investigated based on normal form theory and center manifold theorem. What is more, the global continuation of the local Hopf bifurcation is discussed by using a global Hopf bifurcation result. Furthermore, the optimal harvesting is obtained by the Pontryagin’s Maximum Principle. Finally, some numerical simulations are given to confirm our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document