extraneous fixed points
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 527
Author(s):  
Manoj Kumar Singh ◽  
Arvind K. Singh

In this paper, we have obtained three optimal order Newton’s like methods of order four, eight, and sixteen for solving nonlinear algebraic equations. The convergence analysis of all the optimal order methods is discussed separately. We have discussed the corresponding conjugacy maps for quadratic polynomials and also obtained the extraneous fixed points. We have considered several test functions to examine the convergence order and to explain the dynamics of our proposed methods. Theoretical results, numerical results, and fractal patterns are in support of the efficiency of the optimal order methods.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 562 ◽  
Author(s):  
Min-Young Lee ◽  
Young Ik Kim ◽  
Beny Neta

A generic family of optimal sixteenth-order multiple-root finders are theoretically developed from general settings of weight functions under the known multiplicity. Special cases of rational weight functions are considered and relevant coefficient relations are derived in such a way that all the extraneous fixed points are purely imaginary. A number of schemes are constructed based on the selection of desired free parameters among the coefficient relations. Numerical and dynamical aspects on the convergence of such schemes are explored with tabulated computational results and illustrated attractor basins. Overall conclusion is drawn along with future work on a different family of optimal root-finders.


2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We investigate the complex dynamics of a triparametric family of optimal fourth-order multiple-root solvers by analyzing their basins of attraction along with extensive study of Möbius conjugacy maps and extraneous fixed points applied to a prototype quadratic polynomial raised to the power of the known integer multiplicitym. A600×600uniform grid centered at the origin covering6×6square region is chosen to display the initial points on each basin of attraction according to a coloring scheme based on their orbit behavior. With illustrative basins of attractions applied to various test polynomials and the corresponding statistical data for convergence as well as a number of comparisons made among the listed methods, we confirm our investigation and analysis developed in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Rajni Sharma ◽  
Ashu Bahl

We present a new fourth order method for finding simple roots of a nonlinear equation f(x)=0. In terms of computational cost, per iteration the method uses one evaluation of the function and two evaluations of its first derivative. Therefore, the method has optimal order with efficiency index 1.587 which is better than efficiency index 1.414 of Newton method and the same with Jarratt method and King’s family. Numerical examples are given to support that the method thus obtained is competitive with other similar robust methods. The conjugacy maps and extraneous fixed points of the presented method and other existing fourth order methods are discussed, and their basins of attraction are also given to demonstrate their dynamical behavior in the complex plane.


Fractals ◽  
2007 ◽  
Vol 15 (04) ◽  
pp. 323-336 ◽  
Author(s):  
XINGYUAN WANG ◽  
TINGTING WANG

The Julia sets theory of generalized Newton's method is analyzed and the Julia sets of generalized Newton's method are constructed using the iteration method. From the research we find that: (1) the basins of attraction of the Julia sets of generalized Newton's method depend on the roots of the equation and their orders and also the existence of the extraneous fixed points; (2) the Steffensen method is an exception to the law given in (1); and (3) if the order of the root is decimal, then the different choice of the range of the principal value of the phase angle will cause a different evolvement of the Julia sets.


Sign in / Sign up

Export Citation Format

Share Document