steffensen method
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Miguel A. Hernández-Verón ◽  
Sonia Yadav ◽  
Ángel Alberto Magreñán ◽  
Eulalia Martínez ◽  
Sukhjit Singh

Solving equations of the form H(x)=0 is one of the most faced problem in mathematics and in other science fields such as chemistry or physics. This kind of equations cannot be solved without the use of iterative methods. The Steffensen-type methods, defined using divided differences are derivative free, are usually considered to solve these problems when H is a non-differentiable operator due to its accuracy and efficiency. However, in general, the accessibility of these iterative methods is small. The main interest of this paper is to improve the accessibility of Steffensen-type methods, this is the set of starting points that converge to the roots applying those methods. So, by means of using a predictor–corrector iterative process we can improve this accessibility. For this, we use a predictor iterative process, using symmetric divided differences, with good accessibility and then, as corrector method, we consider the Center-Steffensen method with quadratic convergence. In addition, the dynamical studies presented show, in an experimental way, that this iterative process also improves the region of accessibility of Steffensen-type methods. Moreover, we analyze the semilocal convergence of the predictor–corrector iterative process proposed in two cases: when H is differentiable and H is non-differentiable. Summing up, we present an effective alternative for Newton’s method to non-differentiable operators, where this method cannot be applied. The theoretical results are illustrated with numerical experiments.


Author(s):  
Umair Khalid Qureshi

This article is presented a modified quadrature iterated methods of Boole rule and Weddle rule for solving non-linear equations which arise in applied sciences and engineering. The proposed methods are converged quadratically and the idea of developed research comes from Boole rule and Weddle rule. Few examples are demonstrated to justify the proposed method as the assessment of the newton raphson method, steffensen method, trapezoidal method, and quadrature method. Numerical results and graphical representations of modified quadrature iterated methods are examined with C++ and EXCEL. The observation from numerical results that the proposed modified quadrature iterated methods are performance good and well executed as the comparison of existing methods for solving non-linear equations.


Author(s):  
Umair Khalid Qureshi ◽  
Zubair Ahmed Kalhoro ◽  
Rajab Ali Malookani ◽  
Sanaullah Dehraj ◽  
Shahid Hussain Siyal ◽  
...  

Solving the root of algebraic and transcendental nonlinear equation f' (x) = 0 is a classical problem which has many interesting applications in computational mathematics and various branches of science and engineering. This paper examines the quadratic convergence iterative algorithms for solving a single root nonlinear equation which depends on the Taylor’s series and backward difference method. It is shown that the proposed iterative algorithms converge quadratically. In order to justify the results and graphs of quadratic convergence iterative algorithms, C++/MATLAB and EXCELL are used. The efficiency of the proposed iterative algorithms in comparison with Newton Raphson method and Steffensen method is illustrated via examples. Newton Raphson method fails if f' (x) = 0, whereas Steffensen method fails if the initial guess is not close enough to the actual solution. Furthermore, there are several other numerical methods which contain drawbacks and possess large number of evolution; however, the developed iterated algorithms are good in these conditions. It is found out that the quadratic convergence iterative algorithms are good achievement in the field of research for computing a single root of nonlinear equations.


2019 ◽  
Vol 53 (2) ◽  
pp. 657-666
Author(s):  
Mohammad Afzalinejad

A problem with rapidly convergent methods for unconstrained optimization like the Newton’s method is the computational difficulties arising specially from the second derivative. In this paper, a class of methods for solving unconstrained optimization problems is proposed which implicitly applies approximations to derivatives. This class of methods is based on a modified Steffensen method for finding roots of a function and attempts to make a quadratic model for the function without using the second derivative. Two methods of this kind with non-expensive computations are proposed which just use first derivative of the function. Derivative-free versions of these methods are also suggested for the cases where the gradient formulas are not available or difficult to evaluate. The theory as well as numerical examinations confirm the rapid convergence of this class of methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Janak Raj Sharma ◽  
Puneet Gupta

Based on Traub-Steffensen method, we present a derivative free three-step family of sixth-order methods for solving systems of nonlinear equations. The local convergence order of the family is determined using first-order divided difference operator for functions of several variables and direct computation by Taylor's expansion. Computational efficiency is discussed, and a comparison between the efficiencies of the proposed techniques with the existing ones is made. Numerical tests are performed to compare the methods of the proposed family with the existing methods and to confirm the theoretical results. It is shown that the new family is especially efficient in solving large systems.


2014 ◽  
Vol 490-491 ◽  
pp. 763-766
Author(s):  
Wu Yao ◽  
Feng Tao ◽  
Jun Long Song ◽  
Li Ran

Loudness describes the sound intensity sensations of the human hearing. A study about loudness calculation which is based on the Moore model shows us that starting from the mechanism of human`s ear, the basic principle and calculation skills of algorithm have been researched. By using Matlab to optimize the algorithm, the specific loudness curve and loudness level of any audio file can be calculated; equal-loudness curve by using Steffensen method is calculated compared with that from the acoustic standard, In order to validating the program. The loudness of the sewing machine under different conditions is calculated.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Xufeng Shang ◽  
Xingping Shao ◽  
Peng Wu

Fractals ◽  
2007 ◽  
Vol 15 (04) ◽  
pp. 323-336 ◽  
Author(s):  
XINGYUAN WANG ◽  
TINGTING WANG

The Julia sets theory of generalized Newton's method is analyzed and the Julia sets of generalized Newton's method are constructed using the iteration method. From the research we find that: (1) the basins of attraction of the Julia sets of generalized Newton's method depend on the roots of the equation and their orders and also the existence of the extraneous fixed points; (2) the Steffensen method is an exception to the law given in (1); and (3) if the order of the root is decimal, then the different choice of the range of the principal value of the phase angle will cause a different evolvement of the Julia sets.


Sign in / Sign up

Export Citation Format

Share Document