spacecraft attitude dynamics
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2019 ◽  
Vol 91 (10) ◽  
pp. 1268-1277
Author(s):  
Qingxian Jia ◽  
Huayi Li ◽  
Xueqin Chen ◽  
Yingchun Zhang

Purpose The purpose of this paper is to achieve fault reconstruction for reaction wheels in spacecraft attitude control systems (ACSs) subject to space disturbance torques. Design/methodology/approach Considering the influence of rotating reaction wheels on spacecraft attitude dynamics, a novel non-linear learning observer is suggested to robustly reconstruct the loss of reaction wheel effectiveness faults, and its stability is proven using Lyapunov’s indirect method. Further, an extension of the proposed approach to bias faults reconstruction for reaction wheels in spacecraft ACSs is performed. Findings The numerical example and simulation demonstrate the effectiveness of the proposed fault-reconstructing methods. Practical implications This paper includes implications for the development of reliability and survivability of on-orbit spacecrafts. Originality/value This paper proposes a novel non-linear learning observer-based reaction wheels fault reconstruction for spacecraft ACSs.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Soheil Sarabandi ◽  
Federico Thomas

The parameterization of rotations is a central topic in many theoretical and applied fields such as rigid body mechanics, multibody dynamics, robotics, spacecraft attitude dynamics, navigation, three-dimensional image processing, and computer graphics. Nowadays, the main alternative to the use of rotation matrices, to represent rotations in ℝ3, is the use of Euler parameters arranged in quaternion form. Whereas the passage from a set of Euler parameters to the corresponding rotation matrix is unique and straightforward, the passage from a rotation matrix to its corresponding Euler parameters has been revealed to be somewhat tricky if numerical aspects are considered. Since the map from quaternions to 3 × 3 rotation matrices is a 2-to-1 covering map, this map cannot be smoothly inverted. As a consequence, it is erroneously assumed that all inversions should necessarily contain singularities that arise in the form of quotients where the divisor can be arbitrarily small. This misconception is herein clarified. This paper reviews the most representative methods available in the literature, including a comparative analysis of their computational costs and error performances. The presented analysis leads to the conclusion that Cayley's factorization, a little-known method used to compute the double quaternion representation of rotations in four dimensions from 4 × 4 rotation matrices, is the most robust method when particularized to three dimensions.


Sign in / Sign up

Export Citation Format

Share Document