hierarchical control architecture
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Paramet Wirasanti ◽  
Suttichai Premrudeepreechacharn

<span lang="EN-US">Regarding a potential of electric vehicles, it has been widely discussed that the electric vehicle can be participated in electricity ancillary services. Among the ancillary service products, the system frequency regulation is often considered. However, the participation in this service has to be conformed to the hierarchical frequency control architecture. Therefore, the vehicle to grid (V2G) application in this article is proposed in the term of multiple-areas of operation. The multiple-areas in this article are concerned as parking areas, which the parking areas can be implied as a V2G operator. From that, V2G operator can obtain the control signal from hierarchical control architecture for power sharing purpose. A power sharing concept between areas is fulfilled by a proposed adaptive droop factor based on battery state of charge and available capacity of parking area. A nonlinear multiplier factor is used for the droop adaptation. An available capacity is also applied as a limitation for the V2G operation. The available capacity is analyzed through a stochastic character. As the V2G application has to be cooperated with the hierarchical control functions, i.e. primary control and secondary control, then the effect of V2G on hierarchical control functions is investigated and discussed.</span>


2021 ◽  
Author(s):  
Qian Long ◽  
Kaushik Das ◽  
Poul Ejnar Sørensen

The utility-scale co-located hybrid power plants (HPPs) have been receiving attention globally due to enhanced controllability and efficient utilization of electrical infrastructure. While power plant control has been extensively studied for single-technology power plants in the past decades, how to control a co-located HPP that includes sub-plants with multiple technologies is yet to be well defined. To fill the gap, this paper proposes a novel hierarchical control architecture for co-located HPPs. This control architecture contains four control levels: asset control level, plant control level, HPP control level and HPP energy management system (EMS) level. The objective of HPP EMS level is to find optimal strategies for market participation, and the objective of HPP control level is to execute those strategies from the HPP EMS in real time. The interactions across the control hierarchy are firstly discussed in this paper, where attention is closely paid to interactions between HPP EMS level and HPP control level, and between HPP control level and plant control level. Novel strategies for control coordination are presented to ensure all the control levels work together without counteracting against each other. Frequency control and fault ride-through are two examples to demonstrate such control coordination.


2021 ◽  
Author(s):  
Qian Long ◽  
Kaushik Das ◽  
Poul Ejnar Sørensen

The utility-scale co-located hybrid power plants (HPPs) have been receiving attention globally due to enhanced controllability and efficient utilization of electrical infrastructure. While power plant control has been extensively studied for single-technology power plants in the past decades, how to control a co-located HPP that includes sub-plants with multiple technologies is yet to be well defined. To fill the gap, this paper proposes a novel hierarchical control architecture for co-located HPPs. This control architecture contains four control levels: asset control level, plant control level, HPP control level and HPP energy management system (EMS) level. The objective of HPP EMS level is to find optimal strategies for market participation, and the objective of HPP control level is to execute those strategies from the HPP EMS in real time. The interactions across the control hierarchy are firstly discussed in this paper, where attention is closely paid to interactions between HPP EMS level and HPP control level, and between HPP control level and plant control level. Novel strategies for control coordination are presented to ensure all the control levels work together without counteracting against each other. Frequency control and fault ride-through are two examples to demonstrate such control coordination.


2019 ◽  
Vol 13 (10) ◽  
pp. 1431-1440 ◽  
Author(s):  
Yuxiao Zhang ◽  
Ke Dai ◽  
Chen Xu ◽  
Yong Kang ◽  
Ziwei Dai

Author(s):  
Adrián Fernández Amil ◽  
Giovanni Maffei ◽  
Jordi-Ysard Puigbò ◽  
Xerxes D. Arsiwalla ◽  
Paul F. M. J. Verschure

Author(s):  
Fengchen Wang ◽  
Yan Chen

To enhance the performance of vehicle rollover detection and prevention, this paper proposes a novel control strategy integrating the mass-center-position (MCP) metric and the active rollover preventer (ARPer) system. The applied MCP metric can provide completed rollover information without saturation in the case of tire lift-off. Based on the continuous roll motion detection provided by the MCP metric, the proposed ARPer system can generate corrective control efforts independent to tire–road interactions. Moreover, the capability of the ARPer system is investigated for the given vehicle physical spatial constraints. A hierarchical control architecture is also designed for tracking desired accelerations derived from the MCP metric and allocating control efforts to the ARPer system and the active front steering (AFS) control. Cosimulations between CarSim® and MATLAB/SIMULINK with a fishhook maneuver are conducted to verify the control performance. The results show that the vehicle with the assistance of the ARPer system can successfully achieve better performance of vehicle rollover prevention, compared with an uncontrolled vehicle and an AFS-controlled vehicle.


Sign in / Sign up

Export Citation Format

Share Document