oxidation induction temperature
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2019 ◽  
Vol 39 (6) ◽  
pp. 556-564
Author(s):  
Wenxin Han ◽  
Jianjun Lu ◽  
Jingyi Ren ◽  
Dandan Lian ◽  
Junde Xing

Abstract Polyphenylene sulfide (PPS) is easily oxidized at high temperature, which greatly limits its applications. In this study, a nano-SiO2 compound antioxidant (SiO2-g-AO) was prepared and incorporated into PPS by melt compounding to obtain PPS/SiO2-g-AO composites. SiO2-g-AO was prepared by reacting 3-(3,5-di-tert-butyl-4-hydroxyphenyl) (antioxidant AO) with an aminosilane coupling agent (KH792). Fourier transform infrared (FTIR) spectroscopy, energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA) confirmed that the antioxidant AO was successfully immobilized on the surface of SiO2 and the thermal stability was improved. Scanning electron microscopy (SEM) images showed that SiO2-g-AO was uniformly dispersed in PPS. It has been found that the crystallinity and mechanical properties of PPS composites improved, and the dynamic oxidation induction temperature (OIT) increased in the range of 16.7°C–21.1°C. A synergistic anti-oxidation model of nanoparticles and antioxidants, namely a multi-stage antioxidant system, was established by comprehensive analysis of experimental results. The synergistic anti-oxidation model provides a new idea for the antioxidant modification of polymer composites.


Sign in / Sign up

Export Citation Format

Share Document