On the Oxidation Induction Time and Oxidation Induction Temperature for Characterization of the Oxidative Stability of Poly(ethylene-co-propylene) Pipes

2018 ◽  
Author(s):  
Anton A. Apostolov
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yue Yu ◽  
Min Huang ◽  
Jiaqi Lv ◽  
Yunhang Zeng ◽  
Qingyong Sun ◽  
...  

AbstractFatliquor oxidation may give leather unpleasant odor, and excessive amounts of Cr(VI) and volatile organic compounds. The accurate evaluation and improvement of the oxidative stability of fatliquors are of great significance to high-quality leather manufacturing. We proposed a set of practical methods for evaluating the oxidative stability of fatliquors on the basis of oxidation induction time, change in iodine value (∆ IV), and change in acid value (∆ AV) under accelerated oxidation conditions (at 100 °C with 10 L/h of air). Oxidation induction time is a highly sensitive marker for quantifying the oxidative stability of fatliquors, and ∆ IV and ∆ AV that are low cost and easy to operate are useful in evaluating the oxidative stability of fatliquors when the oxidation induction time is less than 22 h. The number of double bonds in fatliquors is an important factor affecting oxidative stability. The sulfation modification of fatliquors that greatly reduces double bonds and the addition of antioxidants, especially butylated hydroxyanisole and butylated hydroxytoluene, markedly improve oxidative stability of fatliquors.


2018 ◽  
Author(s):  
Dinesh Mishra ◽  
Sisi Wang ◽  
Zhicheng Jin ◽  
Eric Lochner ◽  
Hedi Mattoussi

<p>We describe the growth and characterization of highly fluorescing, near-infrared-emitting nanoclusters made of bimetallic Au<sub>25-x</sub>Ag<sub>x</sub> cores, prepared using various monothiol-appended hydrophobic and hydrophilic ligands. The reaction uses well-defined triphenylphosphine-protected Au<sub>11</sub> clusters (as precursors), which are reacted with Ag(I)-thiolate complexes. The prepared nanoclusters are small (diameter < 2nm, as characterized by TEM) with emission peak at 760 nm and long lifetime (~12 µs). The quantum yield measured for these materials was 0.3 - 0.4 depending on the ligand. XPS measurements show the presence of both metal atoms in the core, with measured binding energies that agree with reported values for nanocluster materials. The NIR emission combined with high quantum yield, small size and ease of surface functionalization afforded by the coating, make these materials suitable to implement investigations that address fundamental questions and potentially useful for biological sensing and imaging applications.<br></p>


Sign in / Sign up

Export Citation Format

Share Document