glacial stage
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
pp. 1-19
Author(s):  
Haidee Cadd ◽  
Lynda Petherick ◽  
Jonathan Tyler ◽  
Annika Herbert ◽  
Tim J Cohen ◽  
...  

Abstract The timing and duration of the coldest period in the last glacial stage, often referred to as the last glacial maximum (LGM), has been observed to vary spatially and temporally. In Australia, this period is characterised by colder, and in some places more arid, climates than today. We applied Monte-Carlo change point analysis to all available continuous proxy records covering this period, primarily pollen records, from across Australia (n = 37) to assess this change. We find a significant change point occurred (within uncertainty) at 28.6 ± 2.8 ka in 25 records. We interpret this change as a shift to cooler climates, associated with a widespread decline in biological productivity. An additional change point occurred at 17.7 ± 2.2 ka in 24 records. We interpret this change as a shift towards warmer climates, associated with increased biological productivity. We broadly characterise the period between 28.6 (± 2.8) – 17.7 (± 2.2) ka as an extended period of maximum cooling, with low productivity vegetation that may have occurred as a combined response to reduced temperatures, lower moisture availability and atmospheric CO2. These results have implications for how the spatial and temporal coherence of climate change, in this case during the LGM, can be best interrogated and interpreted.


2021 ◽  
Author(s):  
Ji-Woong Yang ◽  
Amaëlle Landais ◽  
Margaux Brandon ◽  
Thomas Blunier ◽  
Frédéric Prié ◽  
...  

<p>The primary production, or oxygenic photosynthesis of the global biosphere, is one of the main source and sink of atmospheric oxygen (O<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>), respectively. There has been a growing number of evidence that global gross primary productivity (GPP) varies in response to climate change. It is therefore important to understand the climate- and/or environment controls of the global biosphere primary productivity for better predicting the future evolution of biosphere carbon uptake. The triple-isotope composition of O<sub>2</sub> (Δ<sup>17</sup>O of O<sub>2</sub>) trapped in polar ice cores allows us to trace the past changes of global biosphere primary productivity as far back as 800,000 years before present (800 ka). Previously available Δ<sup>17</sup>O of O<sub>2</sub> records over the last ca. 450 ka show relatively low and high global biosphere productivity over the last five glacial and interglacial intervals respectively, with a unique pattern over Termination V (TV) - Marine Isotopic Stage (MIS) 11, as biosphere productivity at the end of TV is ~ 20 % higher than the four younger ones (Blunier et al., 2012; Brandon et al., 2020). However, questions remain on (1) whether the concomitant changes of global biosphere productivity and CO<sub>2</sub> were the pervasive feature of glacial periods over the last 800 ka, and (2) whether the global biosphere productivity during the “lukewarm” interglacials before the Mid-Brunhes Event (MBE) were lower than those after the MBE.<br>Here, we present an extended composite record of Δ<sup>17</sup>O of O<sub>2</sub> covering the last 800 ka, based on new Δ<sup>17</sup>O of O<sub>2</sub> results from the EPICA Dome C and reconstruct the evolution of global biosphere productivity over that time interval using the independent box models of Landais et al. (2007) and Blunier et al. (2012). We find that the glacial productivity minima occurred nearly synchronously with the glacial CO<sub>2</sub> minima at mid-glacial stage; interestingly millennia before the sea level reaches their minima. Following the mid-glacial minima, we also show slight productivity increases at the full-glacial stages, before deglacial productivity rises. Comparison of reconstructed interglacial productivity demonstrates a slightly higher productivity over the post-MBE (MISs 1, 5, 7, 9, and 11) than pre-MBE ones (MISs 13, 15, 17, and 19). However, the mean difference between post- and pre-MBE interglacials largely depends on the box model used for productivity reconstruction.</p>


2020 ◽  
Author(s):  
Cheng Zhao ◽  
Eelco J. Rohling ◽  
Zhengyu Liu ◽  
Xiaoqiang Yang ◽  
Enlou Zhang ◽  
...  

2020 ◽  
pp. 1-20
Author(s):  
Piotr Kłapyta ◽  
Marcel Mîndrescu ◽  
Jerzy Zasadni

Abstract In the eastern Carpathians the legacy of glaciation is preserved in several isolated mountain massifs. This paper presents new mapping results of glaciated valley land systems in the Rodna Mountains, the highest part of the eastern Carpathians (2303 m above seal level). In most of the glacial valleys, the maximal Pleistocene extent is marked by freshly shaped moraines, which are referred in this study as the Pietroasa glacial stage and regarded as the last glacial maximum (LGM) advance. Only in three valleys do older Şesura glacial stage moraines (pre-LGM, likely Marine Oxygen Isotope Stage 6) occur. On the basis of the geomorphological record, we reconstruct the extent, surface geometry, and equilibrium line altitude (ELA) of Pietroasa-stage glaciers. The local ELA pattern of north-exposed glaciers in the Rodna Mountains shows a rising trend towards the southeast, which suggests dominant snow-bearing winds and orographically induced precipitation from the west. This finding fits well with the dominant palaeo-wind direction inferred from other Carpathian proxies and confirms the dominance of zonal circulation pattern during the global LGM in central eastern Europe.


2020 ◽  
Vol 177 (6) ◽  
pp. 1107-1128 ◽  
Author(s):  
Miguel Ezpeleta ◽  
Juan José Rustán ◽  
Diego Balseiro ◽  
Federico Miguel Dávila ◽  
Juan Andrés Dahlquist ◽  
...  

The Late Paleozoic Ice Age (LPIA) has been well recorded in the uppermost Mississippian–Pennsylvanian of Gondwana. Nevertheless, little is known about the temporal and geographic dynamics, particularly during the early Mississippian. We report on exceptional Tournaisian glaciomarine stratigraphic sections from central Argentina (Río Blanco Basin). Encompassing c. 1400 m, these successions contain conspicuous glacigenic strata with age constraints provided by palaeontological data and U/Pb detrital zircon age spectra. A variety of marine, glaciomarine and fan-deltaic environments indicate relative sea-level variations mainly associated with tectonism and repetitive cycles of glacial activity. Provenance analysis indicates a source from the Sierras Pampeanas basement located to the east. Fifteen sequences were grouped into three depositional models: (1) Transgressive Systems Tracts (TST) to Highstand Systems Tracts (HST) sequences unaffected by glacial ice; (2) Lowstand Systems Tracts (LST) to TST and then to HST with glacial influence; and (3) non-glacial Falling-Stage Systems Tracts (FSST) to TST and HST. The glacial evidence indicates that the oldest Mississippian glacial stage of the LPIA in southwestern Gondwana is constrained to the middle Tournaisian. In contrast with previous descriptions of Gondwanan coeval glacial records, our sequence analysis confirms complex hierarchical climate variability, rather than a single episode of ice advance and retreat.Supplementary material: Detailed stratigraphic sections, palaeocurrents and compositional analysis and U/Pb detrital Zr methodology and data are available at: https://doi.org/10.6084/m9.figshare.c.5011424


Sign in / Sign up

Export Citation Format

Share Document