biological productivity
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 116)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
Author(s):  
Aiqin Han ◽  
Jianping Gan ◽  
Minhan Dai ◽  
Zhongming Lu ◽  
Linlin Liang ◽  
...  

Coastal downwelling is generally considered to have a limited biological effect compared with coastal upwelling. In this study, downslope transport of nearshore, nutrient-enriched waters during downwelling is found to induce distinct biological productivity in the water column over the northeastern South China Sea (NSCS). By conducting a process-driven study over a widened shelf with intensified downwelling in the NSCS, we investigated the biophysical processes associated with strong nutrient enrichment in the water column of downwelled waters. These processes and underlying mechanisms are largely unreported and remain unclear. Field measurements and a three-dimensional coupled physical-biological model incorporating nitrate (N), phytoplankton (P), zooplankton (Z), and detritus (D) were utilized to investigate distinct cross-shore nutrient transport over the uniquely widened NSCS shelf. We revealed that intensified downwelling circulation, dynamically induced by the widened shelf topography, enhanced chlorophyll a and biological productivity in a strip of well-mixed water over the inner shelf as well as in the downwelled water over the mid-shelf. Strong time lags and spatial differences existed among N, P, and Z because of the physical transport and the ensuing biogeochemical response. The intensified downslope transport of nutrient-rich coastal water formed distinct cross-shore wedge-shaped P, Z, and D structures, while N was rapidly consumed in the water column. This study illustrates the underlying coupled physical-biogeochemical processes associated with the observed biogeochemical response to wind-driven downwelling circulation over the variable shelf, which are commonly found in coastal oceans worldwide.


2021 ◽  
Vol 118 (51) ◽  
pp. e2105074118
Author(s):  
Peng Liu ◽  
Jingjun Liu ◽  
Aoshuang Ji ◽  
Christopher T. Reinhard ◽  
Noah J. Planavsky ◽  
...  

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ′17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air–sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air–sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ′17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rong Wang ◽  
Gerhard Kuhn ◽  
Xun Gong ◽  
Boris K. Biskaborn ◽  
Rainer Gersonde ◽  
...  

A marine sediment record from the central Bering Sea, spanning the last 20 thousand years (ka), was studied to unravel the depositional history with regard to terrigenous sediment supply and biogenic sedimentation. Methodic approaches comprised the inference of accumulation rates of siliciclastic and biogenic components, grain-size analysis, and (clay) mineralogy, as well as paleoclimatic modelling. Changes in the depositional history provides insight into land-ocean linkages of paleoenvironmental changes. During the finale of the Last Glacial Maximum, the depositional environment was characterized by hemipelagic background sedimentation. A marked change in the terrigenous sediment provenance during the late Heinrich 1 Stadial (15.7–14.5 ka), indicated by increases in kaolinite and a high glaciofluvial influx of clay, gives evidence of the deglaciation of the Brooks Range in the hinterland of Alaska. This meltwater pulse also stimulated the postglacial onset of biological productivity. Glacial melt implies regional climate warming during a time of widespread cooling on the northern hemisphere. Our simulation experiment with a coupled climate model suggests atmospheric teleconnections to the North Atlantic, with impacts on the dynamics of the Aleutian Low system that gave rise to warmer winters and an early onset of spring during that time. The late deglacial period between 14.5 and 11.0 ka was characterized by enhanced fluvial runoff and biological productivity in the course of climate amelioration, sea-level rise, seasonal sea-ice retreat, and permafrost thaw in the hinterland. The latter processes temporarily stalled during the Younger Dryas stadial (12.9-11.7 ka) and commenced again during the Preboreal (earliest Holocene), after 11.7 ka. High river runoff might have fertilized the Bering Sea and contributed to enhanced upper ocean stratification. Since 11.0 ka, advanced transgression has shifted the coast line and fluvial influence of the Yukon River away from the study site. The opening of the Bering Strait strengthened contour currents along the continental slope, leaving behind winnowed sand-rich sediments through the early to mid-Holocene, with non-deposition occurring since about 6.0 ka.


2021 ◽  
Vol 939 (1) ◽  
pp. 012044
Author(s):  
A J Shokirov ◽  
S S Lapasov ◽  
K J Shokirov

Abstract At present, scientific research is underway to further develop vegetable growing in the secondary crop, in particular to further increase the yield and quality of white cabbage, to select a system of planting time-sowing scheme that maximizes the biological productivity of varieties, and to apply the most optimal standards of fertilization and irrigation. In this regard, the urgent task remains to determine the optimal varieties of cabbage that can be grown in repeated crops, their optimal planting scheme, timing, development and implementation of optimal standards for each variety of mineral fertilizers and irrigation, and its solution is large-scale throughout the country. Besides that a number of problematic issues are addressed, which could allow to get high and high-quality harvest of white cabbage in repeated sowing in grain-free areas.


2021 ◽  
Vol 935 (1) ◽  
pp. 012046
Author(s):  
P M Evlakov ◽  
A A Bichkov ◽  
T A Grodetskaya ◽  
V Yu Zapletin

Abstract The purpose of this study was to determine the role of various LED (light-emitting diode) light units in ensuring high-quality growth and development of plants, as well as to obtain high-quality seedlings of strawberries and ground cover rose. We studied the physiological reactions of garden strawberry (“Melga” variety) and ground cover rose (“Fairy” variety) plants under controlled conditions and obtained the data on the effect of light quality on plant biological productivity, dynamics of growth processes, photosynthesis rate and transpiration. Regardless of the type of studied crops, the tallest plants were obtained under conditions of supplementary lighting by the lamp with blue/green/red ratio in the spectrum 17/29/54 % (option 1) and the lamp with ratio 18/45/37 % (option 2). At the same time, the dry weight of leaves and roots, as well as the biological productivity of strawberry plants in experimental options 1 and 2 exceeded by 41% than in the control plants (under high pressure sodium lamp). For garden strawberry we recommend the LED in the option 2, for the ground cover rose optimal is the option 1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruna B. Dias ◽  
Alexander M. Piotrowski ◽  
Cátia F. Barbosa ◽  
Igor M. Venancio ◽  
Cristiano M. Chiessi ◽  
...  

AbstractContinental shelves have the potential to remove atmospheric carbon dioxide via the biological pump, burying it in seafloor sediments. The efficiency of marine carbon sequestration changes rapidly due to variations in biological productivity, organic carbon oxidation, and burial rate. Here we present a high temporal resolution record of marine carbon sequestration changes from a western South Atlantic shelf site sensitive to Brazil Current-driven upwelling. The comparison of biological records to rare earth element (REE) patterns from authigenic oxides shows a strong relationship between higher biological productivity and stronger particle reactive element cycling (i.e. REE cycling) during rapid climate change events. This is the first evidence that authigenic oxides archive past changes in upper ocean REE cycling by the exported organic carbon. In addition, our data suggest that Brazil Current-driven upwelling varies on millennial-scales and in time with continental precipitation anomalies as registered in Brazilian speleothems during the Holocene. This indicates an ocean–atmosphere control on the biological pump, most probably related to South American monsoon system variability.


2021 ◽  
Author(s):  
◽  
Hannah Brightley

<p>The Little Ice Age (LIA) (1400-1850 AD) represents one of the most significant climatic shifts over the past 5000 years. Previous studies from Antarctica indicate generally cooler and stormier conditions during this period, but this pattern shows distinct spatial and temporal variability. The Roosevelt Island Climate Evolution (RICE) ice core provides a new opportunity to study the drivers behind this variability at annual/seasonal resolution, in a relatively under-sampled and climatically sensitive region in the eastern Ross Sea. Contrary to previous studies, isotope measurements suggest warm conditions during the LIA at Roosevelt Island.  This study presents analysis of eight major ions (Na⁺, Mg²⁺, Ca²⁺, K⁺, MS⁻, Cl⁻, NO₃⁻, SO₄²⁻) using both Ion Chromatograph and ICP-MS data, in order to reconstruct the atmospheric circulation pattern, sea ice extent and marine primary productivity across this LIA to Modern Era (ME) at Roosevelt Island. The dataset is tied to a robust age model allowing annual dating and the opportunity to accurately reconstruct rates of change during this ME-LIA. Challenges revolving around the calibration of the Ion Chromatograph are also discussed. The major ion record determines whether the lack of cooling in the Roosevelt Island core implied by the stable isotopes represents a true temperature anomaly or whether the atmospheric circulation pattern caused an isotopic enrichment that masks an underlying cooling.  It was determined that Roosevelt Island experienced during the LIA (i) an increase in marine air mass intrusions along with weaker katabatic winds compared to the 200 years prior, (ii) decreased biological productivity and (iii) increased sea ice. From the 1850-1880s to 1992 AD, there is a shift to reduced marine winds, increased katabatics, increased biological productivity and decreased sea ice until 1992. In the wider Ross Sea context, this suggests an east-west divide in terms of the dominance of katabatics versus marine wind influence. This divide is attributed with the warming signal seen in the RICE record in the Eastern Ross Sea and the cooling in the Western Ross Sea records. It is also likely linked to the influence of climate indices on the depth/position of the Amundsen Sea Low.</p>


2021 ◽  
Author(s):  
◽  
Hannah Brightley

<p>The Little Ice Age (LIA) (1400-1850 AD) represents one of the most significant climatic shifts over the past 5000 years. Previous studies from Antarctica indicate generally cooler and stormier conditions during this period, but this pattern shows distinct spatial and temporal variability. The Roosevelt Island Climate Evolution (RICE) ice core provides a new opportunity to study the drivers behind this variability at annual/seasonal resolution, in a relatively under-sampled and climatically sensitive region in the eastern Ross Sea. Contrary to previous studies, isotope measurements suggest warm conditions during the LIA at Roosevelt Island.  This study presents analysis of eight major ions (Na⁺, Mg²⁺, Ca²⁺, K⁺, MS⁻, Cl⁻, NO₃⁻, SO₄²⁻) using both Ion Chromatograph and ICP-MS data, in order to reconstruct the atmospheric circulation pattern, sea ice extent and marine primary productivity across this LIA to Modern Era (ME) at Roosevelt Island. The dataset is tied to a robust age model allowing annual dating and the opportunity to accurately reconstruct rates of change during this ME-LIA. Challenges revolving around the calibration of the Ion Chromatograph are also discussed. The major ion record determines whether the lack of cooling in the Roosevelt Island core implied by the stable isotopes represents a true temperature anomaly or whether the atmospheric circulation pattern caused an isotopic enrichment that masks an underlying cooling.  It was determined that Roosevelt Island experienced during the LIA (i) an increase in marine air mass intrusions along with weaker katabatic winds compared to the 200 years prior, (ii) decreased biological productivity and (iii) increased sea ice. From the 1850-1880s to 1992 AD, there is a shift to reduced marine winds, increased katabatics, increased biological productivity and decreased sea ice until 1992. In the wider Ross Sea context, this suggests an east-west divide in terms of the dominance of katabatics versus marine wind influence. This divide is attributed with the warming signal seen in the RICE record in the Eastern Ross Sea and the cooling in the Western Ross Sea records. It is also likely linked to the influence of climate indices on the depth/position of the Amundsen Sea Low.</p>


2021 ◽  
Vol 51 (4) ◽  
pp. 5-13
Author(s):  
A. Ya. Sotnik ◽  
I. G. Loskutov

The results of the study of collection oat samples of various ecological and geographical origin are presented. The experiments were carried out in Novosibirsk region in 1994-2018. The sources that combine the optimal density of the productive plant stand and the mass of grain from the panicle were identified according to the ripeness groups. There were 413 collection samples of spring oats studied from 42 countries of the world for 25 years. Collection varieties were evaluated in nurseries of the 2nd-3d year of study. To identify the best samples, a scoring evaluation system of the traits under consideration, i.e. the density of the productive plant stand and the mass of grain from the panicle, was used. Comparison of genotypes for these traits was carried out within a group of varieties with an equal score for the duration of the seedlings -wax ripeness period. The standard varieties Krasnoobsky and Rovesnik were studied for all 25 years, therefore, all years were divided into three groups according to the average biological yield of these varieties. The first group includes 5 years, in which the standard varieties formed a low yield - less than 300 g/m2. The second group includes 14 years with a standard yield of 300-600 g/m2. The third group includes 5 years with the most favorable conditions for the formation of a high biological yield - more than 600 g/m2. A significant correlation between biological productivity and panicle productivity was noted in the standard variety Krasnoobsky during the years with a medium yield and in the standard variety Rovesnik during the years with a high yield. With the traits being evaluated in points, biological productivity showed a strong positive correlation with panicle productivity in Krasnoobsky variety in all groups of years, and in Rovesnik variety only in groups of years with medium and high yield. The sources of biological productivity of oats were identified by ripeness groups: very early - VIR-14522 (Dukat, Poland); early-ripening - VIR-14223 (Ardo KR-FPTS, Czechoslovakia); mid-early - VIR-15340 (Uran, Omsk region), VIR-14729 (SG-K-93682, the Czech Republic), VIR-14588 (Gramena, Germany), VIR-14582 (Carl Theodor, Germany), VIR-15012 (Togurchanin, Tomsk region), VIR-14706 (Keeper, Great Britain), VIR-14581 (Borka, Germany), VIR-15178 (Begunok, Ulyanovsk region) and Novosibirsky 5 (Novosibirsk region); mid-ripening - VIR-14377 (Mutika 572, Omsk region), VIR-14520 (Kwant, Poland), VIR-15254 (AC Mustang, Canada), VIR-15280 (55h 2106, Moscow region) and VIR-14527 (OM 1385, Great Britain); medium-late - VIR-15065 (Irtysh 22, Omsk region), VIR-14860 (Malysh, Tyumen region) and VIR-15103 (R8N9 3037-3072, Krasnoyarsk region).


Sign in / Sign up

Export Citation Format

Share Document