kozak context
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 2)

Genetics ◽  
2021 ◽  
Author(s):  
Jinsheng Dong ◽  
Alan G Hinnebusch

Abstract The eukaryotic 43S pre-initiation complex (PIC) containing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable “Kozak” context. AUG recognition triggers rearrangement of the PIC from an open conformation to a closed state with more tightly bound Met-tRNAiMet. Yeast ribosomal protein uS5/Rps2 is located at the mRNA entry channel of the 40S subunit in the vicinity of mRNA nucleotides downstream from the AUG codon or rRNA residues that communicate with the decoding center, but its participation in start codon recognition was unknown. We found that non-lethal substitutions of conserved Rps2 residues in the entry channel reduce bulk translation initiation and increase discrimination against poor initiation codons. A subset of these substitutions suppress initiation at near-cognate UUG start codons in a yeast mutant with elevated UUG initiation, and also increase discrimination against AUG codons in suboptimal Kozak context, thus resembling previously described substitutions in uS3/Rps3 at the 40S entry channel or initiation factors eIF1 and eIF1A. In contrast, other Rps2 substitutions selectively discriminate against either near-cognate UUG codons, or poor Kozak context of an AUG or UUG start codon. These findings suggest that different Rps2 residues are involved in distinct mechanisms involved in discriminating against different features of poor initiation sites in vivo.


2020 ◽  
Vol 48 (18) ◽  
pp. 10280-10296
Author(s):  
Anil Thakur ◽  
Swati Gaikwad ◽  
Anil K Vijjamarri ◽  
Alan G Hinnebusch

Abstract In translation initiation, AUG recognition triggers rearrangement of the 48S preinitiation complex (PIC) from an open conformation to a closed state with more tightly-bound Met-tRNAi. Cryo-EM structures have revealed interactions unique to the closed complex between arginines R55/R57 of eIF2α with mRNA, including the −3 nucleotide of the ‘Kozak’ context. We found that R55/R57 substitutions reduced recognition of a UUG start codon at HIS4 in Sui− cells (Ssu− phenotype); and in vitro, R55G-R57E accelerated dissociation of the eIF2·GTP·Met-tRNAi ternary complex (TC) from reconstituted PICs with a UUG start codon, indicating destabilization of the closed complex. R55/R57 substitutions also decreased usage of poor-context AUGs in SUI1 and GCN4 mRNAs in vivo. In contrast, eIF2α-R53 interacts with the rRNA backbone only in the open complex, and the R53E substitution enhanced initiation at a UUG codon (Sui− phenotype) and poor-context AUGs, while reducing the rate of TC loading (Gcd− phenotype) in vivo. Consistently, R53E slowed TC binding to the PIC while decreasing TC dissociation at UUG codons in vitro, indicating destabilization of the open complex. Thus, distinct interactions of eIF2α with rRNA or mRNA stabilize first the open, and then closed, conformation of the PIC to influence the accuracy of initiation in vivo.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Ola Lee ◽  
Hui Min Lee ◽  
Rute Maria Pinto ◽  
Paul Digard ◽  
Eleanor Gaunt

Bovine rotavirus (RV) infection causes severe diarrhoea in young dairy calves and has a significant economic impact on livestock production as a result of high morbidity and mortality caused. Development of technologies to engineer infectious RV using an entirely plasmid-based reverse genetics (RG) system has proven challenging. A breakthrough was made when Kanaiand co-authors (PNAS, 2017)developed a plasmid-only-based RG system for the simian RV strain SA11.We are currently developing an analogous RG system for the bovine RF RV strain. Having parallel systems for different RV strains will help to validate phenotypic changes induced by site-directed mutagenesis (SDM) within the RV genome. The coding capacity of the 11-segmented dsRNA RV genome has been largely unexplored. Using bioinformatic analyses, we have identified four segments with up to five putative alternative initiation codons which are in moderate or strong Kozak context. Furthermore, some occur in segments for which the canonical start codon occurs within 15 nucleotides of the start of the segment, further suggesting the possibility of alternative translation start sites to generate coding diversity. We are now applying our RG systems to investigate RV coding capacity using TnT transcription assays, radiolabelling and SDM.


2020 ◽  
Vol 30 (7) ◽  
pp. 974-984 ◽  
Author(s):  
Maria S. Benitez-Cantos ◽  
Martina M. Yordanova ◽  
Patrick B.F. O'Connor ◽  
Alexander V. Zhdanov ◽  
Sergey I. Kovalchuk ◽  
...  

2020 ◽  
Vol 48 (5) ◽  
pp. 2312-2331 ◽  
Author(s):  
Edward W J Wallace ◽  
Corinne Maufrais ◽  
Jade Sales-Lee ◽  
Laura R Tuck ◽  
Luciana de Oliveira ◽  
...  

Abstract Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5′ and 3′ ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.


2019 ◽  
Author(s):  
Edward Wallace ◽  
Corinne Maufrais ◽  
Jade Sales-Lee ◽  
Laura Tuck ◽  
Luciana de Oliveira ◽  
...  

AbstractEukaryotic protein synthesis initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but studies of S. cerevisiae suggest this context is of little importance in fungi. We tested this concept in two pathogenic Cryptococcus species by genome-wide mapping of translation and of mRNA 5’ and 3’ ends. We observed that upstream open reading frames (uORFs) are a major contributor to translation repression, that uORF use depends on the Kozak sequence context of its start codon, and that uORFs with strong contexts promote nonsense-mediated mRNA decay. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Further analysis shows that such dual-localization is also predicted to be common in Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that programs the expression and structures of proteins in fungi.


2017 ◽  
Vol 114 (11) ◽  
pp. E2126-E2135 ◽  
Author(s):  
Jinsheng Dong ◽  
Colin Echeverría Aitken ◽  
Anil Thakur ◽  
Byung-Sik Shin ◽  
Jon R. Lorsch ◽  
...  

The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAiMet in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP scans the mRNA leader for an AUG codon in favorable “Kozak” context. AUG recognition provokes rearrangement from an open PIC conformation with TC bound in a state not fully engaged with the P site (“POUT”) to a closed, arrested conformation with TC tightly bound in the “PIN” state. Yeast ribosomal protein Rps3/uS3 resides in the mRNA entry channel of the 40S subunit and contacts mRNA via conserved residues whose functional importance was unknown. We show that substitutions of these residues reduce bulk translation initiation and diminish initiation at near-cognate UUG start codons in yeast mutants in which UUG selection is abnormally high. Two such substitutions—R116D and R117D—also increase discrimination against an AUG codon in suboptimal Kozak context. Consistently, the Arg116 and Arg117 substitutions destabilize TC binding to 48S PICs reconstituted in vitro with mRNA harboring a UUG start codon, indicating destabilization of the closed PIN state with a UUG–anticodon mismatch. Using model mRNAs lacking contacts with either the mRNA entry or exit channels of the 40S subunit, we demonstrate that Arg116/Arg117 are crucial for stabilizing PIC–mRNA contacts at the entry channel, augmenting the function of eIF3 at both entry and exit channels. The corresponding residues in bacterial uS3 promote the helicase activity of the elongating ribosome, suggesting that uS3 contacts with mRNA enhance multiple phases of translation across different domains of life.


2017 ◽  
Author(s):  
Jinsheng Dong ◽  
Colin Echeverría Aitken ◽  
Anil Thakur ◽  
Byung-Sik Shin ◽  
Jon R. Lorsch ◽  
...  

ABSTRACTThe eukaryotic 43S pre-initiation complex (PIC) bearing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable “Kozak” context. AUG recognition provokes rearrangement from an open PIC conformation with TC bound in a state not fully engaged with the P site (“POUT”) to a closed, arrested conformation with TC tightly bound in the “PIN” state. Yeast ribosomal protein Rps3/uS3 resides in the mRNA entry channel of the 40S subunit and contacts mRNA via conserved residues whose functional importance was unknown. We show that substitutions of these residues reduce bulk translation initiation and diminish initiation at near-cognate UUG start codons in yeast mutants in which UUG selection is abnormally high (Sui-), conferring the Ssu- phenotype. Two such Ssu- substitutions—R116D and R117D—also increase discrimination against an AUG codon in suboptimal Kozak context. Consistently, the Arg116 and Arg117 substitutions destabilize TC binding to 48S PICs reconstituted in vitro with mRNA harboring a UUG start codon, indicating destabilization of the closed PIN state with a UUG:anticodon mismatch. Using model mRNAs lacking contacts with either the mRNA entry or exit channels of the 40S subunit, we demonstrate that Arg116/Arg117 are crucial for stabilizing PIC:mRNA contacts at the entry channel, complementing the function of eIF3 at both entry and exit channels. The corresponding residues in bacterial uS3 promote the helicase activity of the elongating ribosome, suggesting that uS3 contacts with mRNA enhance multiple phases of translation across different domains of life.


Sign in / Sign up

Export Citation Format

Share Document