bovine rotavirus
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 32)

H-INDEX

39
(FIVE YEARS 2)

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1389
Author(s):  
Xi Cheng ◽  
Wei Wu ◽  
Fei Teng ◽  
Yue Yan ◽  
Guiwei Li ◽  
...  

Group A rotaviruses (RVAs) are major enteric pathogens causing infections in calves. To investigate the epidemiological characteristics and genetic diversity of bovine rotavirus (BRV), 233 fecal samples were collected from calves with diarrhea in northeast China. The samples were analyzed for sequences encoding the inner capsid protein VP6 (subgroup) and the outer capsid proteins VP7 and VP4 (G and P type, respectively) using RT-PCR. Ten of the 233 samples (4.3%) were identified as BRV positive and were used for virus isolation and sequence analysis, revealing that all strains analyzed were of the G6P[1] genotype. The isolates exhibited high VP6 sequence identity to the USA cow RVA NCDV strain (>99% amino acid identity) and were further shown to be closely related to Japanese cow RVA BRV101 and Israelian human RVA G6P[1] strains, with >99% amino acid identity to VP7 and VP4 proteins, respectively. Comparative analyses of genome-predicted amino acid sequences between the isolates and the NCDV strains indicated that the antigenicity and infectivity of the strains isolated had changed. In this study, BRV genotypes and the genetic diversity among vaccinated cattle herds were monitored to provide epidemiological data and references for early diagnosis, allowing for early detection of new, potentially pathogenic RVA strains.


2021 ◽  
Author(s):  
AHMED M.A. ZAITOUN ◽  
Ahmed Abdel-rady ◽  
ZAINAB M.A. YOUSSEF

Abstract Neonatal diarrhea is the main cause of morbidity and mortality in calves, and Rotavirus is the main viral etiology. Rotavirus vaccines are one of the main important methods for control of diarrhea in neonates' calves. In the current study, Deoxyribonucleic acid (DNA) sequencing and phylogenetic analysis of Bovine Rotavirus Group A (BRVA) were performed in our study. 1 Calf guard® vaccine genotype (G6P1) and 5 different field genotypes (2 G6P5, 1 G10P5, G10P? and 1 G10P11) were subjected to DNA sequencing. We observed that at the nucleotide level, G10P5 and G10P? sequences were 100 % identical with each other, two G6P5 sequences were 100% identical with each other and there was no significant similarity between sequences of G10P11 with sequences of G6P5, G10P5, and G10P? The phylogenetic analysis of G10P5 and G10P? isolates showed a close cluster with G10 isolates of Sharkia governorate, Egypt, phylogenetic analysis of two G6P5 and one G10P11 isolate showed a close cluster with the VP4 gene of Rotavirus isolates of Dakahlia governorate, Egypt. Molecular comparison between detected and typed Rotaviruses' genotypes with other genotypes of common vaccines indicated that there were genetically close or distance between field and vaccine Rotavirus strains.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Motuma Debelo ◽  
Hayat Abdela ◽  
Asaminew Tesfaye ◽  
Abebaw Tiruneh ◽  
Gudina Mekonnen ◽  
...  

Background. Bovine rotavirus (BRV) and bovine coronavirus (BCoV) are the most common viral agents in neonatal calf diarrhea and result in serious economic consequences. The aim of the study was to determine the epidemiology of those viruses in randomly selected dairy farms of Addis Ababa. Methods. A cross-sectional study was conducted from November 2018 to April 2019 using a probability proportional to size (PPS) sampling technique. A total of 110 calves, less than 30 days of age, from 57 dairy herds were involved in the study. Associated factors of herds and calves were collected using semistructured interviews from farm owners and through physical observation of selected calves. Fecal samples were collected and analyzed using the sandwich ELISA method. Data generated from both semistructured interviews and laboratory investigation were analyzed using STATA_MP version 15. Results. From the total 110 calves, 42 (38.18%) had diarrhea during the survey. The prevalence of bovine rotavirus and coronavirus was 3.64% (4/110) and 0.91% (1/110), respectively. Diarrhea, feeding colostrum timing, and sex of the neonatal calves had statistically significant association with bovine rotavirus infection ( p < 0.05 ). All rotavirus-positive neonatal calves were identified in small scale dairy farms and in dairy farms that reported mortality though they lack statistically significant association. Only one coronavirus case was detected among the neonatal calves. The case was identified among small scale herds and in a herd with diarrheal cases. The sex of the coronavirus calf was female, diarrheic, and among 11-20 days old. Conclusion. The prevalence of rotavirus and coronavirus infections in neonatal calves was seldom in dairy farms of the study area. Rotavirus was more common than coronavirus, and further studies should be initiated on other (infectious and noninfectious) causes of neonatal calf diarrhea in the area.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1308
Author(s):  
Amy Strydom ◽  
Celeste M. Donato ◽  
Martin M. Nyaga ◽  
Simone S. Boene ◽  
Ina Peenze ◽  
...  

This study presents whole genomes of seven bovine rotavirus strains from South Africa and Mozambique. Double-stranded RNA, extracted from stool samples without prior adaptation to cell culture, was used to synthesise cDNA using a self-annealing anchor primer ligated to dsRNA and random hexamers. The cDNA was subsequently sequenced using an Illumina MiSeq platform without prior genome amplification. All strains exhibited bovine-like artiodactyl genome constellations (G10/G6-P[11]/P[5]-I2-R2-C2-M2-A3/A11/A13-N2-T6-E2-H3). Phylogenetic analysis revealed relatively homogenous strains, which were mostly related to other South African animal strains or to each other. It appears that these study strains represent a specific bovine rotavirus population endemic to Southern Africa that was derived through multiple reassortment events. While one Mozambican strain, MPT307, was similar to the South African strains, the second strain, MPT93, was divergent from the other study strains, exhibiting evidence of interspecies transmission of the VP1 and NSP2 genes. The data presented in this study not only contribute to the knowledge of circulating African bovine rotavirus strains, but also emphasise the need for expanded surveillance of animal rotaviruses in African countries in order to improve our understanding of rotavirus strain diversity.


2021 ◽  
Vol 102 (8) ◽  
Author(s):  
Jie Zhu ◽  
Mingpu Qi ◽  
Chuanwen Jiang ◽  
Yongchong Peng ◽  
Qingjie Peng ◽  
...  

Bovine astrovirus (BoAstV) belongs to genus Mamastravirus (MAstV). It can be detected in the faeces of both diarrhoeal and healthy calves. However, its prevalence, genetic diversity, and association with cattle diarrhoea are poorly understood. In this study, faecal samples of 87 diarrhoeal and 77 asymptomatic calves from 20 farms in 12 provinces were collected, and BoAstV was detected with reverse transcription-polymerase chain reaction (RT-PCR). The overall prevalence rate of this virus in diarrhoeal and asymptomatic calves was 55.17 % (95 % CI: 44.13, 65.85 %) and 36.36 % (95 % CI: 25.70, 48.12 %), respectively, indicating a correlation between BoAstV infection and calf diarrhoea (OR=2.15, P=0.024). BoAstV existed mainly in the form of co-infection (85.53 %) with one to five of nine viruses, and there was a strong positive correlation between BoAstV co-infection and calf diarrhoea (OR=2.83, P=0.004). Binary logistic regression analysis confirmed this correlation between BoAstV co-infection and calf diarrhoea (OR=2.41, P=0.038). The co-infection of BoAstV and bovine rotavirus (BRV) with or without other viruses accounted for 70.77 % of all the co-infection cases. The diarrhoea risk for the calves co-infected with BoAstV and BRV was 8.14-fold higher than that for the calves co-infected with BoAstV and other viruses (OR=8.14, P=0.001). Further, the co-infection of BoAstV/BRV/bovine kobuvirus (BKoV) might increase the risk of calf diarrhoea by 14.82-fold, compared with that of BoAstV and other viruses (OR=14.82, P <0.001). Then, nearly complete genomic sequences of nine BoAstV strains were assembled by using next-generation sequencing (NGS) method. Sequence alignment against known astrovirus (AstV) strains at the levels of both amino acids and nucleotides showed a high genetic diversity. Four genotypes were identified, including two known genotypes MAstV-28 (n=3) and MAstV-33 (n=2) and two novel genotypes designated tentatively as MAstV-34 (n=1) and MAstV-35 (n=3). In addition, seven out of nine BoAstV strains showed possible inter-genotype recombination and cross-species recombination. Therefore, our results increase the knowledge about the prevalence and the genetic evolution of BoAstV and provide evidence for the association between BoAstV infection and calf diarrhoea.


2021 ◽  
Vol 8 (7) ◽  
pp. 128
Author(s):  
Engin Berber ◽  
Nurettin Çanakoğlu ◽  
İbrahim Sözdutmaz ◽  
Emrah Simsek ◽  
Neslihan Sursal ◽  
...  

Calf mortality constitutes a substantial loss for agriculture economy-based countries and is also a significant herd problem in developed countries. However, the occurrence and frequency of responsible gastro-intestinal (GI) pathogens in severe newborn diarrhea is still not well known. We aimed to determine the seasonal and age-associated pathogen distribution of severe diarrhea in newborn calves admitted to the intensive care unit (ICU) of Erciyes University animal hospital over a year. Fecal samples were collected during the ICU admissions, and specimens were subjected to a diarrheal pathogen screening panel that included bovine coronavirus (BCoV), Cryptosporidium spp., ETEC K99+, and bovine rotavirus, using RT-PCR and conventional PCR methods. Further isolation experiments were performed with permissive cell cultures and bacterial enrichment methods to identify the clinical importance of infectious pathogen shedding in the ICU. Among the hospitalized calves aged less than 45 days old, the majority of calves originated from small farms (85.9%). The pathogen that most frequently occurred was Cryptosporidium spp. (61.5%) followed by rotavirus (56.4%). The frequency of animal admission to ICU and GI pathogen identification was higher during the winter season (44.9%) when compared to other seasons. Most calves included in the study were 1–6 days old (44.9%). Lastly, co-infection with rotavirus and Cryptosporidium spp. occurred more frequently than other dual or multi-infection events. This study was the first to define severe diarrhea—causing GI pathogens from ICU admitted newborn calves in Turkey.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1786
Author(s):  
Beate Conrady ◽  
Michael Brunauer ◽  
Franz-Ferdinand Roch

The most common worldwide diarrhoea-causing agents in neonatal calves are Cryptosporidium spp. (Crypto), bovine rotavirus (BRV), bovine coronavirus (BCoV), and enterotoxigenic Escherichia coli F5 (K99) (ETEC). Crypto is a zoonotic pathogen of diarrhoea in humans, particularly for children and immunocompromised adults. Four weighted-stratified random-effect meta-analyses including meta-regression analyses were performed to calculate the worldwide mean prevalence of Crypto and associated concurrent infections with BRV, BCoV and ETEC, as well as their potential influencing factors. The meta-analysis incorporated 28 studies (56 substudies) in 17 countries that determined the presence or absence of concurrent infections with Crypto in the global calf population. Approximately half of all considered studies presented here were conducted in Europe independently of the type of infections with Crypto. Within Europe, the highest estimated mean Crypto-BRV prevalence was identified in Ireland (16.7%), the highest estimated mean Crypto-BCoV prevalence was detected in the United Kingdom (4.3%), and the highest estimated mean Crypto-ETEC prevalence across the literature was determined in Turkey (4.7%). The chance of detecting BRV, BCoV, and ETEC in calves with diarrhoea was 0.8 (confidence interval (CI): 0.6–1.0), 0.7 (CI: 0.5–1.0) and 0.6 (CI: 0.4–0.9) lower in the presence of Crypto compared to calves without Crypto. This may indicate an inhibitory effect between BRV, BCoV, ETEC, and Crypto in calves. The variance in the published prevalence across the literature can mainly be explained by the “diagnostic” factor (R2 min–max: 0.0–40.3%), followed by the “health status of the sampled animals” (R2 min–max: 1.4–27.3%) and “geographical region” (R2 min–max: 5.9–23.6%).


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Umer Seid Geletu ◽  
Munera Ahmednur Usmael ◽  
Fufa Dawo Bari

Rotavirus is a major pathogen responsible for diarrheal disease in calves, resulting in loss of productivity and economy of farmers. However, various facets of diarrheal disease caused by rotavirus in calves in the world are inadequately understood, considering that diarrheal disease caused by rotavirus is a vital health problem in calves that interrupts production benefits with reduced weight gain and increased mortality, and its potential for zoonotic spread. The pathological changes made by rotavirus are almost exclusively limited to the small intestine that leads to diarrhea. It is environmentally distributed worldwide and was extensively studied. Reassortment is one of the important mechanisms for generating genetic diversity of rotaviruses and eventually for viral evolution. So, the primary strategy is to reduce the burden of rotavirus infections by practicing early colostrum’s feeding in newborn calves, using vaccine, and improving livestock management. Rotaviruses have a wide host range, infecting many animal species as well as humans. As it was found that certain animal rotavirus strains had antigenic similarities to some human strains, this may be an indication for an animal to play a role as a source of rotavirus infection in humans. Groups A to C have been shown to infect both humans and animals. The most commonly detected strains in both human and animals are G2, G3, G4, and G9, P [6]. Therefore, this review was made to get overview epidemiology status and zoonotic importance of bovine rotavirus.


Author(s):  
Vandana Gupta ◽  
Anju Nayak ◽  
Madhu Swamy ◽  
R.V. Singh ◽  
Vishnu Gupta ◽  
...  

Background: Bovine Rotavirus is one of the most important viral etiological agent responsible for causing neonatal diarrhea incurring severe economic loss to farmers. The presence of large genome size, segmented nature and absence of proof reading activity of RNA polymerase leads to frequent reassortment and thus emergence of new G and P types with ability of interspecies transmission. Methods: During an epidemiological study (July 2016 to July 2019) 200 diarrheic fecal samples were screened for Bovine Rotavirus A using ELISA and RNA-PAGE. Further, twenty two positive samples for RVA were subjected to molecular detection for VP6, VP4 and VP7 genes. Result: Ten (20/200) and 11(22/200) percent diarrheic fecal samples were found positive using ELISA and RNA-PAGE respectively. Twenty samples found positive in ELISA were also found positive in RNA-PAGE. Amongst which 22 (100%) samples were found positive for VP6, while 15 (68.18%) samples showed amplification for VP4 and VP7 gene. All Rotavirus A positive samples were genotyped by multiplex RT-PCR assay. G1G3 was found to be most predominant (53.33%) followed by G3 (26.66%), while one sample each showed the presence of G1G5 and G3G8 (6.66%). Ten samples showed mixed genotype (66.66%). One sample was non typeable (6.66%). Among the P types, P[11] was the most predominant (73.33%), while one sample each showed the presence of P[5] and P[5]P[11] (6.66%) and 02 samples were non typeable (13.33%). The G and P genotype combination determined in 12 samples were as follows; G3P [11] found in two samples (16.66%), G3P[5] in 01(08.33%), G1G5P[11] in 01(08.33%), G1G3P[11] in 07 (58.33%), while 01 (08.33%) sample had mixed genotype G1G3P[5]P[11] combination.


Sign in / Sign up

Export Citation Format

Share Document