codon selection
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sung-Hui Yi ◽  
Valentyn Petrychenko ◽  
Jan Erik Schliep ◽  
Akanksha Goyal ◽  
Andreas Linden ◽  
...  

Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2–GTP–Met-tRNAiMet, and eIF3. The ‘open’ 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The ‘closed’ form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.


2021 ◽  
Author(s):  
Sameer Dixit ◽  
Alan C Kessler ◽  
Jeremy Henderson ◽  
Xiaobei Pan ◽  
Ruoxia Zhao ◽  
...  

Abstract Every type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media. Most significant were variations in tyrosine, which at low levels lead to increased Q content for all the natural tRNAs substrates of tRNA-guanine transglycosylase (TGT). Such increase results from longer nuclear dwell time aided by retrograde transport following cytoplasmic splicing. In turn high tyrosine levels lead to rapid decrease in Q content. Importantly, the dynamic changes in Q content of tRNAs have negligible effects on global translation or growth rate but, at least, in the case of tRNATyr it affected codon choice. These observations have implications for the occurrence of other tunable modifications important for ‘normal’ growth, while connecting the intracellular localization of modification enzymes, metabolites and tRNAs to codon selection and implicitly translational output.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yifei Gu ◽  
Yuanhui Mao ◽  
Longfei Jia ◽  
Leiming Dong ◽  
Shu-Bing Qian

AbstractThe fidelity of start codon recognition by ribosomes is paramount during protein synthesis. The current knowledge of eukaryotic translation initiation implies unidirectional 5ʹ→3ʹ migration of the pre-initiation complex (PIC) along the 5ʹ UTR. In probing translation initiation from ultra-short 5ʹ UTR, we report that an AUG triplet near the 5ʹ end can be selected via PIC backsliding. Bi-directional ribosome scanning is supported by competitive selection of closely spaced AUG codons and recognition of two initiation sites flanking an internal ribosome entry site. Transcriptome-wide PIC profiling reveals footprints with an oscillation pattern near the 5ʹ end and start codons. Depleting the RNA helicase eIF4A leads to reduced PIC oscillations and impaired selection of 5ʹ end start codons. Enhancing the ATPase activity of eIF4A promotes nonlinear PIC scanning and stimulates upstream translation initiation. The helicase-mediated PIC conformational switch may provide an operational mechanism that unifies ribosome recruitment, scanning, and start codon selection.


2021 ◽  
Author(s):  
Sohail Khoshnevis ◽  
R. Elizabeth Dreggors-Walker ◽  
Virginie Marchand ◽  
Yuri Motorin ◽  
Homa Ghalei

Protein synthesis by ribosomes is critically important for gene expression in all cells. The ribosomal RNAs (rRNAs) are marked by numerous chemical modifications. An abundant group of rRNA modifications, present in all domains of life, is 2'-O-methylation guided by box C/D small nucleolar RNAs (snoRNAs) which are part of small ribonucleoprotein complexes (snoRNPs). Although 2'-O-methylations are required for proper production of ribosomes, the mechanisms by which these modifications contribute to translation have remained elusive. Here, we show that a change in box C/D snoRNP biogenesis in actively growing yeast cells results in the production of hypo 2'-O-methylated ribosomes with distinct translational properties. Using RiboMeth-Seq for the quantitative analysis of 2'-O methylations, we identify site-specific perturbations of the rRNA 2'-O-methylation pattern and uncover sites that are not required for ribosome production under normal conditions. Characterization of the hypo 2'-O-methylated ribosomes reveals significant translational fidelity defects including frameshifting and near-cognate start codon selection. Using rRNA structural probing, we show that hypo 2'-O-methylation affects the inherent dynamics of the ribosomal subunits and impacts the binding of translation factor eIF1 thereby causing translational defects. Our data reveal an unforeseen spectrum of 2'-O-methylation heterogeneity in yeast rRNA and suggest a significant role for rRNA 2'-O-methylation in regulating cellular translation by controlling ribosome dynamics and ligand binding.


2021 ◽  
Vol 22 (4) ◽  
pp. 2222
Author(s):  
George Kyriakopoulos ◽  
Vicky Katopodi ◽  
Ilias Skeparnias ◽  
Eleni G. Kaliatsi ◽  
Katerina Grafanaki ◽  
...  

KRASG12C is among the most common oncogenic mutations in lung adenocarcinoma and a promising target for treatment by small-molecule inhibitors. KRAS oncogenic signaling is responsible for modulation of tumor microenvironment, with translation factors being among the most prominent deregulated targets. In the present study, we used TALENs to edit EGFRWT CL1-5 and A549 cells for integration of a Tet-inducible KRASG12C expression system. Subsequent analysis of both cell lines showed that cap-dependent translation was impaired in CL1-5 cells via involvement of mTORC2 and NF-κB. In contrast, in A549 cells, which additionally harbor the KRASG12S mutation, cap-dependent translation was favored via recruitment of mTORC1, c-MYC and the positive regulation of eIF4F complex. Downregulation of eIF1, eIF5 and eIF5B in the same cell line suggested a stringency loss of start codon selection during scanning of mRNAs. Puromycin staining and polysome profile analysis validated the enhanced translation rates in A549 cells and the impaired cap-dependent translation in CL1-5 cells. Interestingly, elevated translation rates were restored in CL1-5 cells after prolonged induction of KRASG12C through an mTORC1/p70S6K-independent way. Collectively, our results suggest that KRASG12C signaling differentially affects the regulation of the translational machinery. These differences could provide additional insights and facilitate current efforts to effectively target KRAS.


2021 ◽  
Author(s):  
Xin Ee Yong ◽  
Palur Venkata Raghuvamsi ◽  
Ganesh S. Anand ◽  
Thorsten Wohland ◽  
Kamal K. Sharma

ABSTRACTBy virtue of its chaperone activity, the capsid protein of dengue virus strain 2 (DENV2C) promotes nucleic acid structural rearrangements. However, the role of DENV2C during the interaction of RNA elements involved in stabilizing the 5’-3’ panhandle structure of DENV RNA is still unclear. Therefore, we determined how DENV2C affects structural functionality of the capsid-coding region hairpin element (cHP) during RNA rearrangement of the 9-nt conserved sequence (5CS) to its complementary 3CS counterpart. The cHP element has two distinct functions: a role in translation start codon selection and a role in RNA synthesis. Our results showed that the cHP hairpin impedes annealing between the 5CS and the 3CS elements. Although DENV2C does not modulate structural functionality of the cHP hairpin, it accelerates annealing and specifically promotes strand displacement of 3CS during 5’-3’ panhandle formation. Furthermore, DENV2C exerts its chaperone activity by favoring one of the active conformations of the cHP element. Based on our results, we propose mechanisms for annealing and strand displacement involving the cHP element. Thus, our results provide mechanistic insights on how DENV2C regulates RNA synthesis by modulating essential RNA elements in the capsid-coding region, that in turn allow for DENV replication.


2020 ◽  
Author(s):  
Ipsita Basu ◽  
Biswajit Gorai ◽  
Thyageshwar Chandran ◽  
Prabal K. Maiti ◽  
Tanweer Hussain

AbstractDuring translational initiation in eukaryotes, the small ribosomal subunit forms a 48S preinitiation complex (PIC) with initiation factors. The 48S PIC binds to the 5’ end of mRNA and inspects long untranslated region (UTR) for the presence of the start codon (AUG). Accurate and high speed of scanning 5’ UTR and subsequent selection of the correct start codon are crucial for protein synthesis. However, the conformational state of 48S PIC required for inspecting every codon is not clearly understood. Whether the scanning or open conformation of 48S PIC can accurately select the cognate start codon over near/non-cognate codons, or this discrimination is carried out only in the scanning-arrested or closed conformation of 48S PIC. Here, using atomistic molecular dynamics (MD) simulations and free energy calculations, we show that the scanning conformation of 48S PIC can reject all but 4 of the 63 non-AUG codons. Among nine near-cognate codons with a single mismatch, only codons with a first position mismatch (GUG, CUG and UUG) or a pyrimidine mismatch at the second position (ACG) are not discriminated by scanning state of 48S PIC. In contrast, any mismatch in the third position is rejected. Simulations runs in absence of one or more eukaryotic initiation factors (eIF1, eIF1+eIF1A, eIF2ɑ or eIF2β) from the system show critical role of eIF1 and eIF2ɑ in start codon selection. The structural analysis indicates that tRNAi dynamics at the widened P site of 48S open state drives codon selection. Further, a stable codon: anticodon interaction prepares the PIC to transit to the closed state. Overall, we provide insights into the selection of start codon during scanning and how the open conformation of 48S PIC can scan long 5’ UTRs with accuracy and high speed without the requirement of sampling the closed state for every codon.


2020 ◽  
Vol 48 (18) ◽  
pp. 10280-10296
Author(s):  
Anil Thakur ◽  
Swati Gaikwad ◽  
Anil K Vijjamarri ◽  
Alan G Hinnebusch

Abstract In translation initiation, AUG recognition triggers rearrangement of the 48S preinitiation complex (PIC) from an open conformation to a closed state with more tightly-bound Met-tRNAi. Cryo-EM structures have revealed interactions unique to the closed complex between arginines R55/R57 of eIF2α with mRNA, including the −3 nucleotide of the ‘Kozak’ context. We found that R55/R57 substitutions reduced recognition of a UUG start codon at HIS4 in Sui− cells (Ssu− phenotype); and in vitro, R55G-R57E accelerated dissociation of the eIF2·GTP·Met-tRNAi ternary complex (TC) from reconstituted PICs with a UUG start codon, indicating destabilization of the closed complex. R55/R57 substitutions also decreased usage of poor-context AUGs in SUI1 and GCN4 mRNAs in vivo. In contrast, eIF2α-R53 interacts with the rRNA backbone only in the open complex, and the R53E substitution enhanced initiation at a UUG codon (Sui− phenotype) and poor-context AUGs, while reducing the rate of TC loading (Gcd− phenotype) in vivo. Consistently, R53E slowed TC binding to the PIC while decreasing TC dissociation at UUG codons in vitro, indicating destabilization of the open complex. Thus, distinct interactions of eIF2α with rRNA or mRNA stabilize first the open, and then closed, conformation of the PIC to influence the accuracy of initiation in vivo.


2020 ◽  
Author(s):  
Mohammed-Husain M. Bharmal ◽  
Jared M. Schrader

AbstractBacterial translation is thought to initiate by base-pairing of the 16S rRNA and the Shine-Dalgarno sequence in the mRNA’s 5’ UTR. However, transcriptomics has revealed that leaderless mRNAs, which completely lack any 5’ UTR, are broadly distributed across bacteria and can initiate translation in the absence of the Shine-Dalgarno sequence. To investigate the mechanism of leaderless mRNA translation initiation, synthetic in vivo translation reporters were designed that systematically tested the effects of start codon accessibility, leader length, and start codon identity on leaderless mRNA translation initiation. Using this data, a simple computational model was built based on the combinatorial relationship of these mRNA features which can accurately classify leaderless mRNAs and predict the translation initiation efficiency of leaderless mRNAs. Thus, start codon accessibility, leader length, and start codon identity combine to define leaderless mRNA translation initiation in bacteria.


Cell Reports ◽  
2019 ◽  
Vol 29 (10) ◽  
pp. 3134-3146.e6 ◽  
Author(s):  
Hema Manjunath ◽  
He Zhang ◽  
Frederick Rehfeld ◽  
Jaeil Han ◽  
Tsung-Cheng Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document