upstream open reading frames
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 42)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ty A Bottorff ◽  
Adam P Geballe ◽  
Arvind Rasi Subramaniam

Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames by several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5′ UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF translation when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF translation via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions.


Author(s):  
Barry Causier ◽  
Tayah Hopes ◽  
Mary McKay ◽  
Zachary Paling ◽  
Brendan Davies

The regulation of protein synthesis plays an important role in growth and development in all organisms. Upstream open reading frames (uORFs) are commonly found in eukaryotic mRNA transcripts and typically attenuate the translation of associated downstream main ORFs (mORFs). Conserved peptide uORFs (CPuORFs) are a rare subset of uORFs, some of which have been shown to conditionally regulate translation by ribosome stalling. Here we identify three Arabidopsis CPuORFs of ancient origin that regulate translation of any downstream ORF, in response to agriculturally significant environmental signals: heat stress and water limitation. We provide evidence that different sequence classes of CPuORF stall ribosomes during different phases of translation and show that plant CPuORFs act as environmental sensors that can be utilised as inducible regulators of translation with broad application.


2021 ◽  
Vol 118 (40) ◽  
pp. e2018899118
Author(s):  
Divya Ram Jayaram ◽  
Sigal Frost ◽  
Chanan Argov ◽  
Vijayasteltar Belsamma Liju ◽  
Nikhil Ponnoor Anto ◽  
...  

Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5′ untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions. This uORF, upstream of the protein kinase C-eta (PKC-η) main ORF, encodes a peptide (uPEP2) containing the typical PKC pseudosubstrate motif present in all PKCs that autoinhibits their kinase activity. We show that uPEP2 directly binds to and selectively inhibits the catalytic activity of novel PKCs but not of classical or atypical PKCs. The endogenous deletion of uORF2 or its overexpression in MCF-7 cells revealed that the endogenously translated uPEP2 reduces the protein levels of PKC-η and other novel PKCs and restricts cell proliferation. Functionally, treatment of breast cancer cells with uPEP2 diminished cell survival and their migration and synergized with chemotherapy by interfering with the response to DNA damage. Furthermore, in a xenograft of MDA-MB-231 breast cancer tumor in mice models, uPEP2 suppressed tumor progression, invasion, and metastasis. Tumor histology showed reduced proliferation, enhanced cell death, and lower protein expression levels of novel PKCs along with diminished phosphorylation of PKC substrates. Hence, our study demonstrates that uORFs may encode biologically active peptides beyond their role as translation regulators of their downstream ORFs. Together, we point to a unique function of a uORF-encoded peptide as a kinase inhibitor, pertinent to cancer therapy.


Author(s):  
Yating Liu ◽  
Joseph D Dougherty

Abstract Summary Whole genome sequencing of patient populations is identifying thousands of new variants in UnTranslated Regions(UTRs). While the consequences of UTR mutations are not as easily predicted from primary sequence as coding mutations are, there are some known features of UTRs that modulate their function. utr.annotation is an R package that can be used to annotate potential deleterious variants in the UTR regions for both human and mouse species. Given a CSV or VCF format variant file, utr.annotation provides information of each variant on whether and how it alters known translational regulators including: upstream Open Reading Frames (uORFs), upstream Kozak sequences, polyA signals, Kozak sequences at the annotated translation start site, start codons, and stop codons, conservation scores in the variant position, and whether and how it changes ribosome loading based on a model derived from empirical data. Availability utr.annotation is freely available on Bitbucket (https://bitbucket.org/jdlabteam/utr.annotation/src/master/) and CRAN (https://cran.r-project.org/web/packages/utr.annotation/index.html) Supplementary information Supplementary data are available at https://wustl.box.com/s/yye99bryfin89nav45gv91l5k35fxo7z.


Author(s):  
Alexandros Frydas ◽  
Rita Cacace ◽  
Julie van der Zee ◽  
Christine Van Broeckhoven ◽  
Eline Wauters

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 911
Author(s):  
Joana Silva ◽  
Pedro Nina ◽  
Luísa Romão

ATP-binding cassette subfamily E member 1 (ABCE1) belongs to the ABC protein family of transporters; however, it does not behave as a drug transporter. Instead, ABCE1 actively participates in different stages of translation and is also associated with oncogenic functions. Ribosome profiling analysis in colorectal cancer cells has revealed a high ribosome occupancy in the human ABCE1 mRNA 5′-leader sequence, indicating the presence of translatable upstream open reading frames (uORFs). These cis-acting translational regulatory elements usually act as repressors of translation of the main coding sequence. In the present study, we dissect the regulatory function of the five AUG and five non-AUG uORFs identified in the human ABCE1 mRNA 5′-leader sequence. We show that the expression of the main coding sequence is tightly regulated by the ABCE1 AUG uORFs in colorectal cells. Our results are consistent with a model wherein uORF1 is efficiently translated, behaving as a barrier to downstream uORF translation. The few ribosomes that can bypass uORF1 (and/or uORF2) must probably initiate at the inhibitory uORF3 or uORF5 that efficiently repress translation of the main ORF. This inhibitory property is slightly overcome in conditions of endoplasmic reticulum stress. In addition, we observed that these potent translation-inhibitory AUG uORFs function equally in cancer and in non-tumorigenic colorectal cells, which is consistent with a lack of oncogenic function. In conclusion, we establish human ABCE1 as an additional example of uORF-mediated translational regulation and that this tight regulation contributes to control ABCE1 protein levels in different cell environments.


2021 ◽  
Author(s):  
Justin Rendleman ◽  
Mahabub Pasha Mohammad ◽  
Matthew Pressler ◽  
Shuvadeep Maity ◽  
Vladislava Hronova ◽  
...  

Translation includes initiation, elongation, and termination, followed by ribosome recycling. We characterize a new sequence element in 5' untranslated regions that consists of an adjacent start and stop codon and thereby excludes elongation. In these start-stop elements, an initiating ribosome is simultaneously positioned for termination without having translocated. At the example of activating transcription factor 4 (ATF4), we demonstrate that start-stops modify downstream re-initiation, thereby repressing translation of upstream open reading frames and enhancing ATF4 inducibility under stress. Start-stop elements are abundant in both mammals and yeast and affect key regulators such as DROSHA and the oncogenic transcription factor NFIA. They provide a unique regulatory layer that impedes ribosome scanning without the energy-expensive peptide production that accompanies upstream open reading frames.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xinxin Liu ◽  
Hualong Liu ◽  
Yuanye Zhang ◽  
Mingliang He ◽  
Rongtian Li ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Håkon Tjeldnes ◽  
Kornel Labun ◽  
Yamila Torres Cleuren ◽  
Katarzyna Chyżyńska ◽  
Michał Świrski ◽  
...  

Abstract Background With the rapid growth in the use of high-throughput methods for characterizing translation and the continued expansion of multi-omics, there is a need for back-end functions and streamlined tools for processing, analyzing, and characterizing data produced by these assays. Results Here, we introduce ORFik, a user-friendly R/Bioconductor API and toolbox for studying translation and its regulation. It extends GenomicRanges from the genome to the transcriptome and implements a framework that integrates data from several sources. ORFik streamlines the steps to process, analyze, and visualize the different steps of translation with a particular focus on initiation and elongation. It accepts high-throughput sequencing data from ribosome profiling to quantify ribosome elongation or RCP-seq/TCP-seq to also quantify ribosome scanning. In addition, ORFik can use CAGE data to accurately determine 5′UTRs and RNA-seq for determining translation relative to RNA abundance. ORFik supports and calculates over 30 different translation-related features and metrics from the literature and can annotate translated regions such as proteins or upstream open reading frames (uORFs). As a use-case, we demonstrate using ORFik to rapidly annotate the dynamics of 5′ UTRs across different tissues, detect their uORFs, and characterize their scanning and translation in the downstream protein-coding regions. Conclusion In summary, ORFik introduces hundreds of tested, documented and optimized methods. ORFik is designed to be easily customizable, enabling users to create complete workflows from raw data to publication-ready figures for several types of sequencing data. Finally, by improving speed and scope of many core Bioconductor functions, ORFik offers enhancement benefiting the entire Bioconductor environment. Availability http://bioconductor.org/packages/ORFik.


Sign in / Sign up

Export Citation Format

Share Document