kozak sequence
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Sebastian Cristian Treitli ◽  
Priscila Peña-Diaz ◽  
Paweł Hałakuc ◽  
Anna Karnkowska ◽  
Vladimír Hampl

Monocercomonoides exilis is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.5 % of the genome sequence is represented by unknown bases. To improve the contiguity, we re-sequenced the genome and transcriptome of M. exilis using Oxford Nanopore Technology (ONT). The resulting draft genome is assembled in 101 contigs with an N50 value of 1.38 Mbp, almost 20 times higher than the previously published assembly. Using a newly generated ONT transcriptome, we further improve the gene prediction and add high quality untranslated region (UTR) annotations, in which we identify two putative polyadenylation signals present in the 3′UTR regions and characterise the Kozak sequence in the 5′UTR regions. All these improvements are reflected by higher BUSCO genome completeness values. Regardless of an overall more complete genome assembly without missing bases and a better gene prediction, we still failed to identify any mitochondrial hallmark genes, thus further supporting the hypothesis on the absence of mitochondrion.


2021 ◽  
Author(s):  
Yuji Fujimoto ◽  
Takuya Keima ◽  
Masayoshi Hashimoto ◽  
Yuka Hagiwara-Komoda ◽  
Naoi Hosoe ◽  
...  

Regardless of the general model of translation in eukaryotic cells, a number of studies suggested that many of mRNAs encode multiple proteins. Leaky scanning, which supplies ribosomes to downstream open reading frames (ORFs) by read-through of upstream ORFs, is the most major regulatory mechanism to translate polycistronic mRNAs. However, the general regulatory factors controlling leaky scanning and their biological relevance have rarely been elucidated, with exceptions such as the Kozak sequence. Here, we have analyzed the strategy of a plant RNA virus to translate three movement proteins from a single RNA molecule through leaky scanning. The in planta and in vitro results indicate that significantly shorter 5′ UTR of the most upstream ORF promotes leaky scanning, potentially finetuning the translation efficiency of the three proteins in a single RNA molecule to optimize viral propagation. Moreover, in plant endogenous mRNAs, we found that shorter UTRs were more frequently observed in uORFs of polycistronic mRNAs. We propose that the promotion of leaky scanning induced by a short 5′ UTR (LISH), together with the Kozak sequence, is a conserved gene regulation mechanism not only in viruses but also in eukaryotes.


2020 ◽  
Vol 21 (18) ◽  
pp. 6465
Author(s):  
Soichiro Yamaguchi ◽  
Maho Hamamura ◽  
Ken-ichi Otsuguro

Mechanical stimuli caused by sound waves are detected by hair cells in the cochlea through the opening of mechanoelectrical transduction (MET) channels. Transmembrane channel-like protein 1 (TMC1) has been revealed to be the pore-forming component of the MET channel. The two splice variants for mouse Tmc1 (mTmc1ex1 and mTmc1ex2) were reported to be expressed in the cochlea of infant mice, though only the sequence of mTmc1ex2 had been deposited in GenBank. However, due to the presence of an upstream open reading frame (uORF) and the absence of a typical Kozak sequence in mTmc1ex2, we questioned whether mTMC1 was translated from mTmc1ex2. Therefore, in this study, we evaluated which splice variant was protein-coding mRNA. Firstly, the results of RT-PCR and cDNA cloning of mTmc1 using mRNA isolated from the cochlea of five-week-old mice suggested that more Tmc1ex1 were expressed than mTmc1ex2. Secondly, mTMC1 was translated from mTmc1ex1 but not from mTmc1ex2 in a heterologous expression system. Finally, analyses using site-directed mutagenesis revealed that the uORF and the weak Kozak sequence in mTmc1ex2 prevented the translation of mTMC1 from mTmc1ex2. These results suggest that mTmc1ex1 plays a main role in the expression of mTMC1 in the mouse cochlea, and therefore, mTmc1ex1 should be the mRNA for mTMC1 hereafter.


2020 ◽  
Vol 117 (7) ◽  
pp. 1946-1960 ◽  
Author(s):  
Noelia Blanco ◽  
Ambrose J. Williams ◽  
Danming Tang ◽  
Dejin Zhan ◽  
Shahram Misaghi ◽  
...  

2020 ◽  
Vol 48 (5) ◽  
pp. 2312-2331 ◽  
Author(s):  
Edward W J Wallace ◽  
Corinne Maufrais ◽  
Jade Sales-Lee ◽  
Laura R Tuck ◽  
Luciana de Oliveira ◽  
...  

Abstract Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5′ and 3′ ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.


2019 ◽  
Vol 47 (20) ◽  
pp. 10477-10488 ◽  
Author(s):  
William D Baez ◽  
Bappaditya Roy ◽  
Zakkary A McNutt ◽  
Elan A Shatoff ◽  
Shicheng Chen ◽  
...  

Abstract In all cells, initiation of translation is tuned by intrinsic features of the mRNA. Here, we analyze translation in Flavobacterium johnsoniae, a representative of the Bacteroidetes. Members of this phylum naturally lack Shine–Dalgarno (SD) sequences in their mRNA, and yet their ribosomes retain the conserved anti-SD sequence. Translation initiation is tuned by mRNA secondary structure and by the identities of several key nucleotides upstream of the start codon. Positive determinants include adenine at position –3, reminiscent of the Kozak sequence of Eukarya. Comparative analysis of Escherichia coli reveals use of the same Kozak-like sequence to enhance initiation, suggesting an ancient and widespread mechanism. Elimination of contacts between A-3 and the conserved β-hairpin of ribosomal protein uS7 fails to diminish the contribution of A-3 to initiation, suggesting an indirect mode of recognition. Also, we find that, in the Bacteroidetes, the trinucleotide AUG is underrepresented in the vicinity of the start codon, which presumably helps compensate for the absence of SD sequences in these organisms.


2019 ◽  
Author(s):  
Edward Wallace ◽  
Corinne Maufrais ◽  
Jade Sales-Lee ◽  
Laura Tuck ◽  
Luciana de Oliveira ◽  
...  

AbstractEukaryotic protein synthesis initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but studies of S. cerevisiae suggest this context is of little importance in fungi. We tested this concept in two pathogenic Cryptococcus species by genome-wide mapping of translation and of mRNA 5’ and 3’ ends. We observed that upstream open reading frames (uORFs) are a major contributor to translation repression, that uORF use depends on the Kozak sequence context of its start codon, and that uORFs with strong contexts promote nonsense-mediated mRNA decay. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Further analysis shows that such dual-localization is also predicted to be common in Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that programs the expression and structures of proteins in fungi.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 182 ◽  
Author(s):  
Heléne Norder ◽  
Theogene Twagirumugabe ◽  
Joanna Said ◽  
Yarong Tian ◽  
Ka-Wei Tang ◽  
...  

Hepatitis B virus (HBV) is endemic in Rwanda and is a major etiologic agent for chronic liver disease in the country. In a previous analysis of HBV strains from Rwanda, the S genes of most strains segregated into one single clade of subgenotype, A1. More than half (55%) of the anti-HBe positive individuals were viremic. In this study, 23 complete HBV genomes and the core promoter region (CP) from 18 additional strains were sequenced. Phylogenetic analysis of complete genomes confirmed that most Rwandan strain formed a single unique clade, within subgenotype A1. Strains from 17 of 22 (77%) anti-HBe positive HBV carriers had either mutated the precore start codon (9 strains with either CUG, ACG, UUG, or AAG) or mutations in the Kozak sequence preceding the pre-core start codon (8 strains). These mutually exclusive mutations were also identified in subgenotypes A1 (70/266; 26%), A2 (12/255; 5%), and A3 (26/49; 53%) sequences from the GenBank. The results showed that previous, rarely described HBV variants, expressing little or no HBeAg, are selected in anti-HBe positive subgenotype Al carriers from Rwanda and that mutations reducing HBeAg synthesis might be unique for a particular HBV clade, not just for a specific genotype or subgenotype.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Julieta M. Acevedo ◽  
Bernhard Hoermann ◽  
Tilo Schlimbach ◽  
Aurelio A. Teleman

Sign in / Sign up

Export Citation Format

Share Document