intramyelinic oedema
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2019 ◽  
Vol 40 (8) ◽  
pp. 1709-1723 ◽  
Author(s):  
Laurent Suissa ◽  
Virginie Flachon ◽  
Jean-Marie Guigonis ◽  
Charles-Vivien Olivieri ◽  
Fanny Burel-Vandenbos ◽  
...  

SLC5A8 is a sodium-coupled monocarboxylate and ketone transporter expressed in various epithelial cells. A putative role of SLC5A8 in neuroenergetics has been also hypothesized. To clarify this issue, we studied the cerebral phenotype of SLC5A8-deficient mice during aging. Elderly SLC5A8-deficient mice presented diffuse leukoencephalopathy characterized by intramyelinic oedema without demyelination suggesting chronic energetic crisis. Hypo-metabolism in the white matter of elderly SLC5A8-deficient mice was found using 99mTc-hexamethylpropyleneamine oxime (HMPAO) single-photon emission CT (SPECT). Since the SLC5A8 protein could not be detected in the mouse brain, it was hypothesized that the leukoencephalopathy of aging SLC5A8-deficient mice was caused by the absence of slc5a8 expression in a peripheral organ, i.e. the kidney, where SLC5A8 is strongly expressed. A hyper-excretion of the ketone β-hydroxybutyrate (BHB) in the urine of SLC5A8-deficient mice was observed and showed that SLC5A8-deficient mice suffered a cerebral BHB insufficiency. Elderly SLC5A8-deficient mice also presented altered glucose metabolism. We propose that the continuous renal loss of BHB leads to a chronic energetic deficiency in the brain of elderly SLC5A8-deficient mice who are unable to counterbalance their glucose deficit. This study highlights the importance of alternative energetic substrates in neuroenergetics especially under conditions of restricted glucose availability.



2014 ◽  
Vol 63 (2) ◽  
pp. 156-160
Author(s):  
Deepa Singh ◽  
S.L. Jethani ◽  
Aksh Dubey


Author(s):  
Emmanuel Cognat ◽  
Sabine Cleophax ◽  
Valérie Domenga-Denier ◽  
Anne Joutel


Sign in / Sign up

Export Citation Format

Share Document