fixed point iteration process
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 4)

H-INDEX

0
(FIVE YEARS 0)

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3109
Author(s):  
Chanchal Garodia ◽  
Afrah A. N. Abdou ◽  
Izhar Uddin

In this paper, we present a new modified iteration process in the setting of uniformly convex Banach space. The newly obtained iteration process can be used to approximate a common fixed point of three nonexpansive mappings. We have obtained strong and weak convergence results for three nonexpansive mappings. Additionally, we have provided an example to support the theoretical proof. In the process, several relevant results are improved and generalized.


2021 ◽  
Vol 18 (181) ◽  
pp. 20210241
Author(s):  
Jesse A. Sharp ◽  
Kevin Burrage ◽  
Matthew J. Simpson

Optimal control theory provides insight into complex resource allocation decisions. The forward–backward sweep method (FBSM) is an iterative technique commonly implemented to solve two-point boundary value problems arising from the application of Pontryagin’s maximum principle (PMP) in optimal control. The FBSM is popular in systems biology as it scales well with system size and is straightforward to implement. In this review, we discuss the PMP approach to optimal control and the implementation of the FBSM. By conceptualizing the FBSM as a fixed point iteration process, we leverage and adapt existing acceleration techniques to improve its rate of convergence. We show that convergence improvement is attainable without prohibitively costly tuning of the acceleration techniques. Furthermore, we demonstrate that these methods can induce convergence where the underlying FBSM fails to converge. All code used in this work to implement the FBSM and acceleration techniques is available on GitHub at https://github.com/Jesse-Sharp/Sharp2021 .


2021 ◽  
Author(s):  
Jesse A Sharp ◽  
Kevin Burrage ◽  
Matthew J Simpson

Optimal control theory provides insight into complex resource allocation decisions. The forward-backward sweep method (FBSM) is an iterative technique commonly implemented to solve two-point boundary value problems (TPBVPs) arising from the application of Pontryagin's Maximum Principle (PMP) in optimal control. In this review we discuss the PMP approach to optimal control and the implementation of the FBSM. By conceptualising the FBSM as a fixed point iteration process, we leverage and adapt existing acceleration techniques to improve its rate of convergence. We show that convergence improvement is attainable without prohibitively costly tuning of the acceleration techniques. Further, we demonstrate that these methods can induce convergence where the underlying FBSM fails to converge. All code used in this work to implement the FBSM and acceleration techniques is available on GitHub at https://github.com/Jesse-Sharp/Sharp2021.


Sign in / Sign up

Export Citation Format

Share Document