polygonal curve
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 84-109
Author(s):  
Sandeep Kumar

Abstract The main purpose of this article is to understand the evolution of X t = X s ∧− X ss , with X(s, 0) a regular polygonal curve with a nonzero torsion in the three-dimensional Minkowski space. Unlike in the case of the Euclidean space, a nonzero torsion now implies two different helical curves. This generalizes recent works by the author with de la Hoz and Vega on helical polygons in the Euclidean space as well as planar polygons in the Minkowski space. Numerical experiments in this article show that the trajectory of the point X(0, t) exhibits new variants of Riemann’s non-differentiable function whose structure depends on the initial torsion in the problem. As a result, we observe that the smooth solutions (helices, straight line) in the Minkowski space show the same instability as displayed by their Euclidean counterparts and curves with zero-torsion. These numerical observations are in agreement with some recent theoretical results obtained by Banica and Vega.


2021 ◽  
Vol 180 (3) ◽  
pp. 275-287
Author(s):  
Ali Gholami Rudi

A polygonal curve is simplified to reduce its number of vertices, while maintaining similarity to its original shape. Numerous results have been published for vertex-restricted simplification, in which the vertices of the simplified curve are a subset of the vertices of the input curve. In curve-restricted simplification, i.e. when the vertices of the simplified curve are allowed to be placed on the edges of the input curve, the number of vertices may be much more reduced. In this paper, we present algorithms for computing curve-restricted simplifications of polygonal curves under the local Hausdorff distance measure.


2015 ◽  
Vol 9 (6) ◽  
pp. 914-925 ◽  
Author(s):  
Tingting Lu ◽  
Weiduo Hu ◽  
Chang Liu ◽  
Daguang Yang

2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Rudolf Pernis ◽  
Tibor Kvackaj

The calculation of average material contact pressure to rolls base on mathematical theory of rolling process given by Karman equation was solved by many authors. The solutions reported by authors are used simplifications for solution of Karman equation. The simplifications are based on two cases for approximation of the circular arch: (a) by polygonal curve and (b) by parabola. The contribution of the present paper for solution of two-dimensional differential equation of rolling is based on description of the circular arch by equation of a circle. The new term relative stress as nondimensional variable was defined. The result from derived mathematical models can be calculated following variables: normal contact stress distribution, front and back tensions, angle of neutral point, coefficient of the arm of rolling force, rolling force, and rolling torque during rolling process. Laboratory cold rolled experiment of CuZn30 brass material was performed. Work hardening during brass processing was calculated. Comparison of theoretical values of normal contact stress with values of normal contact stress obtained from cold rolling experiment was performed. The calculations were not concluded with roll flattening.


2013 ◽  
Vol 23 (06) ◽  
pp. 443-459 ◽  
Author(s):  
EVANTHIA PAPADOPOULOU ◽  
SANDEEP KUMAR DEY

The farthest line-segment Voronoi diagram illustrates properties surprisingly different from its counterpart for points: Voronoi regions may be disconnected and they are not characterized by convex-hull properties. In this paper we introduce the farthest hull and its Gaussian map as a closed polygonal curve that characterizes the regions of the farthest line-segment Voronoi diagram, and derive tighter bounds on the (linear) size of this diagram. With the purpose of unifying construction algorithms for farthest-point and farthest line-segment Voronoi diagrams, we adapt standard techniques to construct a convex hull and compute the farthest hull in O(n log n) or output sensitive O(n log h) time, where n is the number of line-segments and h is the number of faces in the corresponding farthest Voronoi diagram. As a result, the farthest line-segment Voronoi diagram can be constructed in output sensitive O(n log h) time. Our algorithms are given in the Euclidean plane but they hold also in the general Lp metric, 1 ≤ p ≤ ∞.


2012 ◽  
Vol 47 (6) ◽  
pp. 680-699 ◽  
Author(s):  
Evelyne Hubert ◽  
Marie-Paule Cani

2011 ◽  
Vol 21 (04) ◽  
pp. 417-429 ◽  
Author(s):  
CHANSOPHEA CHUON ◽  
SUMANTA GUHA ◽  
PAUL JANECEK ◽  
NGUYEN DUC CONG SONG

A curvature-based algorithm to simplify a polygonal curve is described, together with its implementation. The so-called SimpliPoly algorithm uses Bézier curves to approximate pieces of the input curve, and assign curvature estimates to vertices of the input polyline from curvature values computed for the Bézier approximations. The authors' implementation of SimpliPoly is interactive and available freely on-line. Additionally, a third-party implementation of SimpliPoly as a plug-in for the GNU Blender 3D modeling software is available. Empirical comparisons indicate that SimpliPoly performs as well as the widely-used Douglas-Peucker algorithm in most situations, and significantly better, because it is curvature-driven, in applications where it is necessary to preserve local features.


Sign in / Sign up

Export Citation Format

Share Document