compensatory muscle hypertrophy
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2014 ◽  
Vol 24 (2) ◽  
pp. 492-505 ◽  
Author(s):  
S. C. Froehner ◽  
S. M. Reed ◽  
K. N. Anderson ◽  
P. L. Huang ◽  
J. M. Percival

1999 ◽  
Vol 87 (5) ◽  
pp. 1705-1712 ◽  
Author(s):  
Gregory R. Adams ◽  
Fadia Haddad ◽  
Kenneth M. Baldwin

During the process of compensatory muscle hypertrophy, satellite cells are thought to proliferate, differentiate, and then fuse with existing myofibers. We hypothesized that early in this process changes occur in the expression of cellular markers indicative of the onset of myogenic processes. The plantaris muscles of rats were overloaded via the unilateral ablation of synergists. Groups of rats were killed at time points from 6 h to 12 days. Changes in muscle gene expression (mRNA) of cyclin D1, p21, myogenin, MyoD, and insulin-like growth factor I (IGF-I, mRNA and peptide) were measured. Cyclin D1 (a cell cycle marker) was increased after 24 h of overloading and corresponded with changes in muscle DNA content. In contrast, p21 and myogenin, markers of cellular differentiation, were increased after just 12 h. Muscle IGF-I peptide levels were also increased at early time points. The results of this study indicate that myogenic processes are activated in response to increased loading at very early time points (e.g., 12 h) and that IGF-I may be modulating this response. Furthermore, these findings suggest that some cells may have been differentiating very early in the adaptation process before events leading to cellular proliferation have been initiated.


1994 ◽  
Vol 76 (5) ◽  
pp. 2026-2030 ◽  
Author(s):  
S. M. Czerwinski ◽  
J. M. Martin ◽  
P. J. Bechtel

Increased load on a muscle (synergistic overload or stretch) results in muscle hypertrophy. The expression of insulin-like growth factor I (IGF-I) mRNA in rat skeletal muscle is increased during synergistic overload-induced hypertrophy. Although it has also been established that fasting animals lose muscle protein, it has been shown that compensatory muscle hypertrophy occurs in adult fasting rats that are undergoing a net loss of body weight. The purpose of this investigation was to determine whether a relationship exists between IGF-I mRNA levels and muscle growth and regression. This was accomplished by examining whether IGF-I mRNA levels were altered during muscle hypertrophy after stretch and regression and the effect of fasting on IGF-I mRNA levels during stretch-induced hypertrophy. Patagialis (PAT) muscle weights increased 13 and 44% at 2 and 11 days of stretch, respectively. However, after removal of the stretch stimulus on day 11, PAT weights began to decrease, reaching control weights by 18 days. During the first time point (2 days), PAT muscle IGF-I mRNA remained constant. IGF-I mRNA abundance was threefold greater than contralateral control levels by 11 days of stretch. IGF-I mRNA levels decreased but remained significantly above control levels throughout the regression of hypertrophy (13, 18, and 25 days). Fasting did not alter PAT muscle response to stretch. After 11 days of stretch, PAT muscle weight increased 60% compared with contralateral control muscles and IGF-I mRNA levels increased three-fold. This study supports a role for IGF-I in muscle hypertrophy but not muscle atrophy.


1984 ◽  
Vol 56 (6) ◽  
pp. 1589-1593 ◽  
Author(s):  
S. R. Max ◽  
N. E. Rance

We studied the effects of sex steroids on muscle weight and oxidative capacity of rat plantaris muscles subjected to functional overload by removal of synergistic muscles. Eight weeks after bilateral synergist removal, plantaris muscles were strikingly hypertrophic compared with unoperated controls. After this period, there were selective alterations in the ability of the muscles to oxidize three substrates of oxidative metabolism. Thus 14CO2 production from [6-14C]glucose and [2-14C]pyruvate was significantly reduced, whereas there was no alteration in 14CO2 production from beta-[3-14C]hydroxybutyrate. Succinate dehydrogenase specific activity was decreased in overloaded muscle. There was no effect of sex hormone status on any of these parameters. Finally, 30 days of functional overload did not influence cytosolic androgen receptor binding. These results are not consistent with the idea that sex steroids and functional overload act synergistically.


1976 ◽  
Vol 21 (1) ◽  
pp. 113-118
Author(s):  
S. Schiaffino ◽  
S. Pierobon Bormioli ◽  
M. Aloisi

Sign in / Sign up

Export Citation Format

Share Document