snow manipulation
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ruslan Shakhmatov ◽  
Shuhei Hashiguchi ◽  
Trofim C. Maximov ◽  
Atsuko Sugimoto

AbstractChanges in winter precipitation (snow) may greatly affect vegetation by altering hydrological and biochemical processes. To understand the effects of changing snow cover depth and melt timing on the taiga forest ecosystem, a snow manipulation experiment was conducted in December 2015 at the Spasskaya Pad experimental larch forest in Eastern Siberia, which is characterized by a continental dry climate with extreme cold winters and hot summers. Variables including soil temperature and moisture, oxygen and hydrogen isotope ratios of soil moisture and stem water, foliar nitrogen and carbon contents and their isotopes, phenology, and soil inorganic nitrogen were observed at snow removal (SNOW−), snow addition (SNOW+), and CONTROL plots. After snow manipulation, the soil temperature at the SNOW− plot decreased significantly compared to the CONTROL and SNOW+ plots. At SNOW− plot, snowmelt was earlier and soil temperature was higher than at other plots during spring because of low soil moisture caused by less snowmelt water. Despite the earlier snowmelt and higher soil temperature in the SNOW− plot in the early growing season, needle elongation was delayed. Leaf chemistry also differed between the CONTROL and SNOW− plots. The needle nitrogen content in the SNOW− plot was lower in the middle of July, whereas no difference was observed among the three plots in August. The soil inorganic nitrogen content of each plot corresponded to these results. The amount of soil ammonium was lower in the SNOW− plot than in the other plots at the end of July, however, once production started in August, the amount of soil ammonium in the three plots was comparable. Extremely low soil temperatures in winter and freeze–thaw cycles in spring and dry soil condition in spring and early summer at the SNOW− plot may have influenced the phenology and production of soil inorganic nitrogen.


2021 ◽  
Author(s):  
Ruslan Shakhmatov ◽  
Shuhei Hashiguchi ◽  
Trofim C. Maximov ◽  
Atsuko Sugimoto

Abstract Changes in winter precipitation (snow) may greatly affect vegetation by altering hydrological and biochemical processes. To understand the effects of changing snow cover depth and melt timing on the taiga forest ecosystem, a snow manipulation experiment was conducted in December 2015 at the Spasskaya Pad experimental larch forest in Eastern Siberia, which is characterized by a continental dry climate with extreme cold winters and hot summers. Variables including soil temperature and moisture, oxygen and hydrogen isotope ratios of soil moisture and stem water, foliar nitrogen and carbon contents and their isotopes, phenology, and soil inorganic nitrogen were observed at snow removal (SNOW−), snow addition (SNOW+), and CONTROL plots. After snow manipulation, the soil temperature at the SNOW− plot decreased significantly compared to the CONTROL and SNOW+ plots. At SNOW−, snowmelt was earlier and soil temperature was higher than at other plots during spring because of low soil moisture caused by less snowmelt water. Despite the earlier snowmelt and higher soil temperature in the SNOW− plot in the early growing season, needle opening and shoot elongation were delayed. Leaf chemistry also differed between the CONTROL and SNOW+ plots. The needle nitrogen content in the SNOW− plot was lower in the middle of July, whereas no difference was observed among the three plots in August. The soil inorganic nitrogen content of each plot corresponded to these results. The amount of soil ammonium was lower in the SNOW− plot than in the other plots at the end of July, however, once production started at the end of August, the amount of soil ammonium in the three plots was comparable. Extremely low soil temperatures in winter and freeze-thaw cycles in spring at the SNOW− plot may have affected these results.


Geoderma ◽  
2020 ◽  
Vol 357 ◽  
pp. 113954 ◽  
Author(s):  
Edward P. Boswell ◽  
Nick J. Balster ◽  
Alex W. Bajcz ◽  
Anita M. Thompson

2015 ◽  
Vol 47 (4) ◽  
pp. 751-772 ◽  
Author(s):  
Alan F. Mark ◽  
Annika C. Korsten ◽  
D. Urrutia Guevara ◽  
Katharine J. M. Dickinson ◽  
Tanja Humar-Maegli ◽  
...  

2009 ◽  
Vol 6 (11) ◽  
pp. 2461-2473 ◽  
Author(s):  
M. Maljanen ◽  
P. Virkajärvi ◽  
J. Hytönen ◽  
M. Öquist ◽  
T. Sparrman ◽  
...  

Abstract. Agricultural soils are the most important sources for the greenhouse gas nitrous oxide (N2O), which is produced and emitted from soils also at low temperatures. The processes behind emissions at low temperatures are still poorly known. Snow is a good insulator and it keeps soil temperature rather constant. To simulate the effects of a reduction in snow depth on N2O emission in warming climate, snow pack was removed from experimental plots on three different agricultural soils (sand, mull, peat). Removal of snow lowered soil temperature and increased the extent and duration of soil frost in sand and mull soils. This led to enhanced N2O emissions during freezing and thawing events. The cumulative emissions during the first year when snow was removed over the whole winter were 0.25, 0.66 and 3.0 g N2O-N m−2 yr−1 in control plots of sand, mull and peat soils, respectively. In the treatment plots, without snow cover, the respective cumulative emissions were 0.37, 1.3 and 3.3 g N2O-N m−2 yr−1. Shorter snow manipulation during the second year did not increase the annual emissions. Only 20% of the N2O emission occurred during the growing season. Thus, these results highlight the importance of the winter season for this exchange and that the year-round measurements of annual N2O emissions from boreal soils are integral for estimating their N2O source strength. N2O accumulated in the frozen soil during winter and the soil N2O concentration correlated with the depth of frost but not with the winter N2O emission rates per se. Also laboratory incubations of soil samples showed high production rates of N2O at temperatures below 0°C, especially in the sand and peat soils.


2009 ◽  
Vol 6 (3) ◽  
pp. 5305-5337 ◽  
Author(s):  
M. Maljanen ◽  
P. Virkajärvi ◽  
J. Hytönen ◽  
M. Öquist ◽  
T. Sparrman ◽  
...  

Abstract. Agricultural soils are the most important sources for the greenhouse gas nitrous oxide (N2O), which is produced and emitted from soil also at low temperatures. The processes behind emissions at low temperatures are still poorly known. To simulate the effects of a reduction in snow depth on N2O emission in warming climate, snow pack was removed from three different agricultural soils (sand, mull, peat). Removal of snow lowered soil temperature and increased the extent and duration of soil frost which led to enhanced N2O emissions during freezing and thawing events in sand and mull soils. The cumulative emissions during the first year when snow was removed over the whole winter were 0.25, 0.66 and 3.0 g N2O-N m−2 yr−1 in control plots of sand, mull and peat soils, respectively. Without snow cover the respectively cumulative emissions were 0.37, 1.3 and 3.3 g N2O-N m−2 yr−1. Shorter snow manipulation during the second year did not increase the annual emissions. Only 20% of the N2O emission occurred during the growing season. Thus, highlighting the importance of the winter season for this exchange and that the year-round measurements of N2O emissions from boreal soils are integral for estimating their N2O source strength. N2O accumulated in the frozen soil during winter and the soil N2O concentration correlated with the depth of frost but not with the winter N2O emission rates per se. Also laboratory incubations of soil samples showed high production rates of N2O at temperatures below 0°C, especially in the sand and peat soils.


Sign in / Sign up

Export Citation Format

Share Document