wet spells
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 31)

H-INDEX

17
(FIVE YEARS 1)

MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 263-274
Author(s):  
N. CHATTOPADHYAY ◽  
G. S. GANESAN

Studies are made of the probability of Occurrence of annual and seasonal rainfall, wet and dry spells on monthly basis throughout the year and on weekly basis during the northeast monsoon season for various stations in coastal Tamil Nadu. It has been observed that amount of rainfall received is more in the stations north of Alangudi and north of Tondi in the northeast and southwest monsoon seasons respectively at all the probability levels. However, the quantum of rainfall is more in stations south of Adiramapattinam during the hot weather period. Number of wet spells are more from July to September in the stations of north costal Tamil Nadu. During the northeast monsoon season also wet weeks are mainly confined to the stations of north coastal Tamil Nadu. Analysis of production figures of some rainfed crops shows more productivity (k8I1\a) in north than in south coastal Tamil Nadu.  


MAUSAM ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 413-415
Author(s):  
S. R. GHADEKAR
Keyword(s):  

MAUSAM ◽  
2021 ◽  
Vol 52 (2) ◽  
pp. 365-370
Author(s):  
JAYANTA SARKAR ◽  
K. SEETHARAM ◽  
S. K. SHAHA

In this investigation 10-day period-wise simple probability, 10-day period-wise  probability of consecutive dry and wet spells of different lengths, and month-wise different parameters, and properties of Markov Chain Model over Vidarbha region during south-west monsoon months have been studied.   For this purpose, daily rainfall data (1 June – 30 September) of 11 stations covering all the districts of Vidarbha for the period 1960-90 have been utilized.   The study reveals that over Vidarbha during monsoon season (June - September) probability of a day being wet and probability of consecutive wet spell of different lengths are by and large high during the last and first 10-day periods of July and August respectively when the monsoon is at its peak. During the first two 10-day periods in June and last two 10-day periods in September, the probabilities of a dry day and that of consecutive dry spell of different lengths and quite high. During July and August a maximum of 12-14 wet days are expected and wet spell, on an average, lasts for 2 days. Stationary probability of the occurrence of wet day (pi2) is found to be maximum during July making it the most humid month in the monsoon season.


MAUSAM ◽  
2021 ◽  
Vol 49 (4) ◽  
pp. 493-498
Author(s):  
S. D. GORE ◽  
PARVIZ NASIRI

Wet-spell analysis is an important part of rainfall analysis. The distribution of the length of wet-spells provides useful information on the temporal distribution of rainfall. This distribution has traditionally been modelled through different probability distributions. Here we compare four such models, namely, Cochran's model, truncated Poisson distribution, truncated negative binomial distribution, and logarithmic series distribution. These comparisons are accomplished with help of application to five rainguage stations in India.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 221-224
Author(s):  
G. N. RAHA ◽  
S. C. KAKATY

The Primary aim in this paper is to find an alternative approach that consists of modeling the pattern of dry and wet spell over some districts of Assam. The Markov Chain Model is used to predict the length of dry and wet spells during the Indian summer monsoon season (June to September). This information may help the agronomists and agricultural scientists in crop planning. Five districts viz., Dibrugarh, Kamrup, Sonitpur, Dhemaji and North­ Lakhimpur are considered here for this study. Markov Chain Model is fitted for each of the district and the results of the five districts are pooled. This pooled result reveals that during the period 1987-1992, the probability for the day being wet when the immediately preceding day is dry for different years varies from 0.44 to 0.54 while the probability of the day being wet when the immediately preceding day is wet for different years varies from 0.74 to 0.86. It is also found that in the Indian summer monsoon season after about every consecutive 4 - 7 wet days a dry day is expected to occur whereas alter about consecutive 2 dry days, a wet day is expected to occur. The number of days required for the process to reach the state of equilibrium varies from 4 - 7 days.


2021 ◽  
Author(s):  
Youen Grusson ◽  
Jennie Barron

Abstract The incidence of dry or wet day sequences has a great influence on crops management and development. The lack of spatialized observed data with appropriate temporal resolution to investigate the changes that has occurred during the last century regarding the length and frequencies of those sequences has led to reliance on reanalysis products. However, the question can be raised about the suitability of those products when evaluating such climate indices and their impacts on crop production. Different products are here investigated to evaluate the way that succession of dry and wet days are depicted. We showed clearly that the frequency and intensity of dry and wet spells returned can differ widely between products. For instance, number of dry spell events can range from 1 to 11 over the same decade for two different products. This divergence in representation of spells could generate substantial differences in impact analysis of crop yields in agricultural modeling.


2021 ◽  
Vol 16 (3) ◽  
pp. 20-35
Author(s):  
Basse Jules ◽  
Camara Moctar ◽  
Diba Ibrahima ◽  
Diedhiou Arona

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 798
Author(s):  
Mohammed Achite ◽  
Nir Y. Krakauer ◽  
Andrzej Wałęga ◽  
Tommaso Caloiero

The Mediterranean Basin, located in a transition zone between the temperate and rainy climate of central Europe and the arid climate of North Africa, is considered a major hotspot of climate change, subject to water scarcity and drought. In this work, dry and wet spells have been analyzed in the Wadi Cheliff basin (Algeria) by means of annual precipitation observed at 150 rain gauges in the period 1970–2018. In particular, the characteristics of dry and wet spells (frequency, duration, severity, and intensity) have been evaluated by means of the run theory applied to the 12-month standardized precipitation index (SPI) values. Moreover, in order to detect possible tendencies in the SPI values, a trend analysis has been performed by means of two non-parametric tests, the Theil–Sen and Mann–Kendall test. The results indicated similar values of frequency, severity, duration, and intensity between the dry and the wet spells, although wet events showed higher values in the extreme. Moreover, the results of the trend analysis evidenced a different behavior between the northern side of the basin, characterized by a negative trend in the 12-month SPI values, and the southern side, in which positive trends were detected.


2021 ◽  
pp. 100331
Author(s):  
Cheikh Modou Noreyni Fall ◽  
Christophe Lavaysse ◽  
Hervé Kerdiles ◽  
Mamadou Simina Dramé ◽  
Philippe Roudier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document