scholarly journals Probability of dry and wet spells over West Africa during the summer monsoon season

2021 ◽  
Vol 16 (3) ◽  
pp. 20-35
Author(s):  
Basse Jules ◽  
Camara Moctar ◽  
Diba Ibrahima ◽  
Diedhiou Arona
MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 221-224
Author(s):  
G. N. RAHA ◽  
S. C. KAKATY

The Primary aim in this paper is to find an alternative approach that consists of modeling the pattern of dry and wet spell over some districts of Assam. The Markov Chain Model is used to predict the length of dry and wet spells during the Indian summer monsoon season (June to September). This information may help the agronomists and agricultural scientists in crop planning. Five districts viz., Dibrugarh, Kamrup, Sonitpur, Dhemaji and North­ Lakhimpur are considered here for this study. Markov Chain Model is fitted for each of the district and the results of the five districts are pooled. This pooled result reveals that during the period 1987-1992, the probability for the day being wet when the immediately preceding day is dry for different years varies from 0.44 to 0.54 while the probability of the day being wet when the immediately preceding day is wet for different years varies from 0.74 to 0.86. It is also found that in the Indian summer monsoon season after about every consecutive 4 - 7 wet days a dry day is expected to occur whereas alter about consecutive 2 dry days, a wet day is expected to occur. The number of days required for the process to reach the state of equilibrium varies from 4 - 7 days.


2016 ◽  
Author(s):  
Imran A. Girach ◽  
Narendra Ojha ◽  
Prabha R. Nair ◽  
Andrea Pozzer ◽  
Yogesh K. Tiwari ◽  
...  

Abstract. We present ship-borne measurements of surface ozone, carbon monoxide and methane over the Bay of Bengal (BoB), the first time such measurements have been taken during the summer monsoon season, as a part of the Continental Tropical Convergence Zone (CTCZ) experiment during 2009. O3, CO, and CH4 mixing ratios exhibited significant spatial and temporal variability in the ranges of 8–54 nmol mol−1, 50–200 nmol mol−1, and 1.57–2.15 µmol mol−1, with means of 29.7 ± 6.8 nmol mol−1, 96 ± 25 nmol mol−1, and 1.83 ± 0.14 µmol mol−1, respectively. The average mixing ratios of trace gases over northern BoB (O3: 30 ± 7 nmol mol−1, CO: 95 ± 25 nmol mol−1, CH4: 1.86 ± 0.12 µmol mol−1), in airmasses from northern or central India, did not differ much from those over central BoB (O3: 27 ± 5 nmol mol−1, CO: 101 ± 27 nmol mol−1, CH4: 1.72 ± 0.14 µmol mol−1), in airmasses from southern India. Spatial variability is observed to be most significant for CH4. The ship-based observations, in conjunction with backward air trajectories and ground-based measurements over the Indian region, are analyzed to estimate a net ozone production of 1.5–4 nmol mol−1 day−1 in the outflow. Ozone mixing ratios over the BoB showed large reductions (by ~ 20 nmol mol−1) during four rainfall events. Temporal changes in the meteorological parameters, in conjunction with ozone vertical profiles, indicate that these low ozone events are associated with downdrafts of free-tropospheric ozone-poor airmasses. While the observed variations in O3 and CO are successfully reproduced using the Weather Research and Forecasting model with Chemistry (WRF-Chem), this model overestimates mean concentrations by about 20 %, generally overestimating O3 mixing ratios during the rainfall events. Analysis of the chemical tendencies from model simulations for a low-O3 event on August 10, 2009, captured successfully by the model, shows the key role of horizontal advection in rapidly transporting ozone-rich airmasses across the BoB. Our study fills a gap in the availability of trace gas measurements over the BoB, and when combined with data from previous campaigns, reveals large seasonal amplitude (~ 39 and ~ 207 nmol mol−1 for O3 and CO, respectively) over the northern BoB.


2021 ◽  
Author(s):  
Jayesh Phadtare ◽  
Jennifer Fletcher ◽  
Andrew Ross ◽  
Andy Turner ◽  
Thorwald Stein ◽  
...  

<p>Precipitation distribution around an orographic barrier is controlled by the Froude Number (Fr) of the impinging flow. Fr is essentially a ratio of kinetic energy and stratification of winds around the orography. For Fr > 1 (Fr <1), the flow is unblocked (blocked) and precipitation occurs over the mountain peaks and the lee region (upwind region). While idealized modelling studies have robustly established this relationship, its widespread real-world application is hampered by the dearth of relevant observations. Nevertheless, the data collected in the field campaigns give us an opportunity to explore this relationship and provide a testbed for numerical models. A realistic distribution of precipitation over a mountainous region in these models is necessary for flash-flood and landslide forecasting. The Western Ghats region is a classic example where the orographically induced precipitation leads to floods and landslides during the summer monsoon season. In the recent INCOMPASS field campaign, it was shown that the precipitation over the west coast of India occurred in alternate offshore and onshore phases. The Western Ghats received precipitation predominantly during the onshore phase which was characterized by a stronger westerly flow. Here, using the radiosonde data from a station over the Indian west coast and IMERG precipitation product, we show that climatologically, these phases can be mapped over an Fr-based classification of the monsoonal westerly flow. Classifying the flow as 'High Fr' (Fr >1), 'Moderate Fr' ( 0.5 < Fr ≤ 1) and 'Low Fr' ( Fr ≤ 0.5 ) gives three topographical modes of precipitation -- 'Orographic', 'Coastal' and 'Offshore', respectively.  Moreover, these modes are not sensitive to the choice of radiosonde station over the west coast.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 717 ◽  
Author(s):  
Feng Chen ◽  
Magdalena Opała-Owczarek ◽  
Piotr Owczarek ◽  
Youping Chen

This study investigates the potential reconstruction of summer monsoon season streamflow variations in the middle reaches of the Yellow River from tree rings in the Qinling Mountains. The regional chronology is significantly positively correlated with the July–October streamflow of the middle Yellow River from 1919 to 1949, and the derived reconstruction explains 36.4% of the actual streamflow variance during this period. High streamflows occurred during 1644–1757, 1795–1806, 1818–1833, 1882–1900, 1909–1920 and 1933–1963. Low streamflows occurred during 1570–1643, 1758–1794, 1807–1817, 1834–1868, 1921–1932 and 1964–2012. High and low streamflow intervals also correspond well to the East Asian summer monsoon (EASM) intensity. Some negative correlations of our streamflow reconstruction with Indo-Pacific sea surface temperature (SST) also suggest the linkage of regional streamflow changes to the Asian summer monsoon circulation. Although climate change has some important effects on the variation in streamflow, anthropogenic activities are the primary factors mediating the flow cessation of the Yellow River, based on streamflow reconstruction.


Author(s):  
Raghavendra Ashrit ◽  
S. Indira Rani ◽  
Sushant Kumar ◽  
S. Karunasagar ◽  
T. Arulalan ◽  
...  

2014 ◽  
Vol 14 (23) ◽  
pp. 12725-12743 ◽  
Author(s):  
S. Fadnavis ◽  
M. G. Schultz ◽  
K. Semeniuk ◽  
A. S. Mahajan ◽  
L. Pozzoli ◽  
...  

Abstract. We analyze temporal trends of peroxyacetyl nitrate (PAN) retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) during 2002–2011 in the altitude range 8–23 km over the Asian summer monsoon (ASM) region. The greatest enhancements of PAN mixing ratios in the upper troposphere and lower stratosphere (UTLS) are seen during the summer monsoon season from June to September. During the monsoon season, the mole fractions of PAN show statistically significant (at 2σ) positive trends from 0.2 ± 0.05 to 4.6 ± 3.1 ppt yr−1 (except between 12 and 14 km) which is higher than the annual mean trends of 0.1 ± 0.05 to 2.7 ± 0.8 ppt yr−1. These rising concentrations point to increasing NOx (= NO + NO2) and volatile organic compound (VOC) emissions from developing nations in Asia, notably India and China. We analyze the influence of monsoon convection on the distribution of PAN in UTLS with simulations using the global chemistry–climate model ECHAM5-HAMMOZ. During the monsoon, transport into the UTLS over the Asian region primarily occurs from two convective zones, one the South China Sea and the other over the southern flank of the Himalayas. India and China host NOx-limited regimes for ozone photochemical production, and thus we use the model to evaluate the contributions from enhanced NOx emissions to the changes in PAN, HNO3 and O3 concentrations in the UTLS. From a set of sensitivity experiments with emission changes in particular regions, it can be concluded that Chinese emissions have a greater impact on the concentrations of these species than Indian emissions. According to SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) NO2 retrievals NOx emissions increases over India have been about half of those over China between 2002 and 2011.


Sign in / Sign up

Export Citation Format

Share Document