ehrenfest time
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 0)

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Silvia Pappalardi ◽  
Anatoli Polkovnikov ◽  
Alessandro Silva

Understanding the footprints of chaos in quantum-many-body systems has been under debate for a long time. In this work, we study the echo dynamics of the Sherrington-Kirkpatrick (SK) model with transverse field under effective time reversal. We investigate numerically its quantum and semiclassical dynamics. We explore how chaotic many-body quantum physics can lead to exponential divergence of the echo of observables and we show that it is a result of three requirements: i) the collective nature of the observable, ii) a properly chosen initial state and iii) the existence of a well-defined chaotic semi-classical (large-N) limit. Under these conditions, the echo grows exponentially up to the Ehrenfest time, which scales logarithmically with the number of spins N. In this regime, the echo is well described by the semiclassical (truncated Wigner) approximation. We also discuss a short-range version of the SK model, where the Ehrenfest time does not depend on N and the quantum echo shows only polynomial growth. Our findings provide new insights on scrambling and echo dynamics and how to observe it experimentally.


Scholarpedia ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. 55031
Author(s):  
Dima Shepelyansky
Keyword(s):  

Author(s):  
Steven Tomsovic

Using semiclassical methods, it is possible to construct very accurate approximations in the short-wavelength limit of quantum dynamics that rely exclusively on classical dynamical input. For systems whose classical realization is strongly chaotic, there is an exceedingly short logarithmic Ehrenfest time scale, beyond which the quantum and classical dynamics of a system necessarily diverge, and yet the semiclassical construction remains valid far beyond that time. This fact leads to a paradox if one ponders the reversibility and predictability properties of quantum and classical mechanics. They behave very differently relative to each other, with classical dynamics being essentially irreversible/unpredictable, whereas quantum dynamics is reversible/stable. This begs the question: ‘How can an accurate approximation to a reversible/stable dynamics be constructed from an irreversible/unpredictable one?’ The resolution of this incongruity depends on a couple of key ingredients: a well-known, inherent, one-way structural stability of chaotic systems; and an overlap integral not being amenable to the saddle point method.


2015 ◽  
Vol 16 (4) ◽  
pp. 787-835 ◽  
Author(s):  
Suresh Eswarathasan ◽  
Gabriel Rivière

We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest time) under small perturbations of the Schrödinger equation, and we prove that, in the semiclassical limit, and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.


2012 ◽  
Vol 45 (21) ◽  
pp. 215307 ◽  
Author(s):  
Roman Schubert ◽  
Raúl O Vallejos ◽  
Fabricio Toscano

2011 ◽  
Vol 23 (09) ◽  
pp. 933-967 ◽  
Author(s):  
PEI CAO ◽  
RÉMI CARLES

We study the propagation of wave packets for nonlinear nonlocal Schrödinger equations in the semi-classical limit. When the kernel is smooth, we construct approximate solutions for the wave functions in subcritical, critical and supercritical cases (in terms of the size of the initial data). The validity of the approximation is proved up to Ehrenfest time. For homogeneous kernels, we establish similar results in subcritical and critical cases. Nonlinear superposition principle for two nonlinear wave packets is also considered.


Sign in / Sign up

Export Citation Format

Share Document