scholarly journals Quantum echo dynamics in the Sherrington-Kirkpatrick model

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Silvia Pappalardi ◽  
Anatoli Polkovnikov ◽  
Alessandro Silva

Understanding the footprints of chaos in quantum-many-body systems has been under debate for a long time. In this work, we study the echo dynamics of the Sherrington-Kirkpatrick (SK) model with transverse field under effective time reversal. We investigate numerically its quantum and semiclassical dynamics. We explore how chaotic many-body quantum physics can lead to exponential divergence of the echo of observables and we show that it is a result of three requirements: i) the collective nature of the observable, ii) a properly chosen initial state and iii) the existence of a well-defined chaotic semi-classical (large-N) limit. Under these conditions, the echo grows exponentially up to the Ehrenfest time, which scales logarithmically with the number of spins N. In this regime, the echo is well described by the semiclassical (truncated Wigner) approximation. We also discuss a short-range version of the SK model, where the Ehrenfest time does not depend on N and the quantum echo shows only polynomial growth. Our findings provide new insights on scrambling and echo dynamics and how to observe it experimentally.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Naoto Shiraishi ◽  
Keiji Matsumoto

AbstractThe investigation of thermalization in isolated quantum many-body systems has a long history, dating back to the time of developing statistical mechanics. Most quantum many-body systems in nature are considered to thermalize, while some never achieve thermal equilibrium. The central problem is to clarify whether a given system thermalizes, which has been addressed previously, but not resolved. Here, we show that this problem is undecidable. The resulting undecidability even applies when the system is restricted to one-dimensional shift-invariant systems with nearest-neighbour interaction, and the initial state is a fixed product state. We construct a family of Hamiltonians encoding dynamics of a reversible universal Turing machine, where the fate of a relaxation process changes considerably depending on whether the Turing machine halts. Our result indicates that there is no general theorem, algorithm, or systematic procedure determining the presence or absence of thermalization in any given Hamiltonian.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
A. Grekov ◽  
A. Zotov

Abstract The infinite number of particles limit in the dual to elliptic Ruijsenaars model (coordinate trigonometric degeneration of quantum double elliptic model) is proposed using the Nazarov-Sklyanin approach. For this purpose we describe double-elliptization of the Cherednik construction. Namely, we derive explicit expression in terms of the Cherednik operators, which reduces to the generating function of Dell commuting Hamiltonians on the space of symmetric functions. Although the double elliptic Cherednik operators do not commute, they can be used for construction of the N → ∞ limit.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sebastian Scherg ◽  
Thomas Kohlert ◽  
Pablo Sala ◽  
Frank Pollmann ◽  
Bharath Hebbe Madhusudhana ◽  
...  

AbstractThe thermalization of isolated quantum many-body systems is deeply related to fundamental questions of quantum information theory. While integrable or many-body localized systems display non-ergodic behavior due to extensively many conserved quantities, recent theoretical studies have identified a rich variety of more exotic phenomena in between these two extreme limits. The tilted one-dimensional Fermi-Hubbard model, which is readily accessible in experiments with ultracold atoms, emerged as an intriguing playground to study non-ergodic behavior in a clean disorder-free system. While non-ergodic behavior was established theoretically in certain limiting cases, there is no complete understanding of the complex thermalization properties of this model. In this work, we experimentally study the relaxation of an initial charge-density wave and find a remarkably long-lived initial-state memory over a wide range of parameters. Our observations are well reproduced by numerical simulations of a clean system. Using analytical calculations we further provide a detailed microscopic understanding of this behavior, which can be attributed to emergent kinetic constraints.


2021 ◽  
Author(s):  
Naoto Shiraishi ◽  
Keiji Matsumoto

Abstract The investigation of thermalization in isolated quantum many-body systems has a long history, dating back to the time of developing statistical mechanics. Most quantum many-body systems in nature are considered to thermalize, while some never achieve thermal equilibrium. The central problem is to clarify whether a given system thermalizes, which has been addressed previously, but not resolved. Here, we show that this problem is undecidable. The resulting undecidability even applies when the system is restricted to one-dimensional shift-invariant systems with nearest-neighbour interaction, and the initial state is a fixed product state. We construct a family of Hamiltonians encoding dynamics of a reversible universal Turing machine, where the fate of a relaxation process changes considerably depending on whether the Turing machine halts. Our result indicates that there is no general theorem, algorithm, or systematic procedure determining the presence or absence of thermalization in any given Hamiltonian.


2014 ◽  
Vol 28 (23) ◽  
pp. 1430013 ◽  
Author(s):  
Václav Špička ◽  
Bedřich Velický ◽  
Anděla Kalvová

This review deals with the state of the art and perspectives of description of nonequilibrium many-body systems using the nonequilibrium Green's function (NGF) method. The basic aim is to describe time evolution of the many-body system from its initial state over its transient dynamics to its long time asymptotic evolution. First, we discuss basic aims of transport theories to motivate the introduction of the NGF techniques. Second, this article summarizes the present view on construction of the electron transport equations formulated within the NGF approach to nonequilibrium. We discuss incorporation of complex initial conditions to the NGF formalism, and the NGF reconstruction theorem, which serves as a tool to derive simplified kinetic equations. Three stages of evolution of the nonequilibrium, the first described by the full NGF description, the second by a non-Markovian generalized master equation and the third by a Markovian master equation will be related to each other.


Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Tony J. G. Apollaro ◽  
Salvatore Lorenzo

The out-of-equilibrium dynamics of many body systems has recently received a burst of interest, also due to experimental implementations. The dynamics of observables, such as magnetization and susceptibilities, and quantum information related quantities, such as concurrence and entanglement entropy, have been investigated under different protocols bringing the system out of equilibrium. In this paper we focus on the entanglement entropy dynamics under a sinusoidal drive of the tranverse magnetic field in the 1D quantum Ising model. We find that the area and the volume law of the entanglement entropy coexist under periodic drive for an initial non-critical ground state. Furthermore, starting from a critical ground state, the entanglement entropy exhibits finite size scaling even under such a periodic drive. This critical-like behaviour of the out-of-equilibrium driven state can persist for arbitrarily long time, provided that the entanglement entropy is evaluated on increasingly subsytem sizes, whereas for smaller sizes a volume law holds. Finally, we give an interpretation of the simultaneous occurrence of critical and non-critical behaviour in terms of the propagation of Floquet quasi-particles.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Burak Şahinoğlu ◽  
Rolando D. Somma

AbstractWe study the problem of simulating the dynamics of spin systems when the initial state is supported on a subspace of low energy of a Hamiltonian H. This is a central problem in physics with vast applications in many-body systems and beyond, where the interesting physics takes place in the low-energy sector. We analyze error bounds induced by product formulas that approximate the evolution operator and show that these bounds depend on an effective low-energy norm of H. We find improvements over the best previous complexities of product formulas that apply to the general case, and these improvements are more significant for long evolution times that scale with the system size and/or small approximation errors. To obtain these improvements, we prove exponentially decaying upper bounds on the leakage to high-energy subspaces due to the product formula. Our results provide a path to a systematic study of Hamiltonian simulation at low energies, which will be required to push quantum simulation closer to reality.


Sign in / Sign up

Export Citation Format

Share Document