coral recruit
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260516
Author(s):  
Anna Koester ◽  
Amanda K. Ford ◽  
Sebastian C. A. Ferse ◽  
Valentina Migani ◽  
Nancy Bunbury ◽  
...  

Coral recruitment and successive growth are essential for post-disturbance reef recovery. As coral recruit and juvenile abundances vary across locations and under different environmental regimes, their assessment at remote, undisturbed reefs improves our understanding of early life stage dynamics of corals. Here, we first explored changes in coral juvenile abundance across three locations (lagoon, seaward west and east) at remote Aldabra Atoll (Seychelles) between 2015 and 2019, which spanned the 2015/16 global coral bleaching event. Secondly, we measured variation in coral recruit abundance on settlement tiles from two sites (lagoon, seaward reef) during August 2018–August 2019. Juvenile abundance decreased from 14.1 ± 1.2 to 7.4 ± 0.5 colonies m-2 (mean ± SE) during 2015–2016 and increased to 22.4 ± 1.2 colonies m-2 during 2016–2019. Whilst juvenile abundance increased two- to three-fold at the lagoonal and seaward western sites during 2016–2018 (from 7.7–8.3 to 17.3–24.7 colonies m-2), increases at the seaward eastern sites occurred later (2018–2019; from 5.8–6.9 to 16.6–24.1 colonies m-2). The composition of coral recruits on settlement tiles was dominated by Pocilloporidae (64–92% of all recruits), and recruit abundance was 7- to 47-fold higher inside than outside the lagoon. Recruit abundance was highest in October–December 2018 (2164 ± 453 recruits m-2) and lowest in June–August 2019 (240 ± 98 recruits m-2). As Acroporid recruit abundance corresponded to this trend, the results suggest that broadcast spawning occurred during October–December, when water temperature increased from 26 to 29°C. This study provides the first published record on coral recruit abundance in the Seychelles Outer Islands, indicates a rapid (2–3 years) increase of juvenile corals following a bleaching event, and provides crucial baseline data for future research on reef resilience and connectivity within the region.


Author(s):  
Christopher A. Brunner ◽  
Sven Uthicke ◽  
Gerard F. Ricardo ◽  
Mia O. Hoogenboom ◽  
Andrew P. Negri
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
S. A. Mwachireya ◽  
A. M. Nzioka ◽  
D. N. Mutiso

Coral recruit and algae abundance and diversity were studied in Kenyan reefs to determine the influence of terrestrial discharge (nutrients and sediments) and the recovery potential of coral reefs after disturbances. Reefs affected by sediments and nutrients were found to have high total, turf, and macroalgae but reduced coralline algae abundance and coral recruit density. Interestingly, this response was found to be the greatest in reefs close to nutrient sources relative to “pristine” reefs and those affected simultaneously by sediments and nutrients. Further, enhanced levels of brown algae and pocilloporid recruits were observed in reefs affected by terrestrial run-off whereas acroporid recruit, coralline, and calcareous algae abundance was high in reefs under low terrestrial input. Our results show that whereas increased sediment levels negatively affect coral recruit density individually, their interaction with nutrients improves recruit density in reefs simultaneously affected by sediment and nutrients. These findings suggest that the assessment of local factors that enhance inhibitory and those that suppress promotional processes involved in coral settlement and recruitment is an important aspect to consider in the conservation and management of coral reefs in the face of local anthropogenic stress as well as future climate disturbance dynamics and their interaction.


Sign in / Sign up

Export Citation Format

Share Document