juvenile abundance
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260516
Author(s):  
Anna Koester ◽  
Amanda K. Ford ◽  
Sebastian C. A. Ferse ◽  
Valentina Migani ◽  
Nancy Bunbury ◽  
...  

Coral recruitment and successive growth are essential for post-disturbance reef recovery. As coral recruit and juvenile abundances vary across locations and under different environmental regimes, their assessment at remote, undisturbed reefs improves our understanding of early life stage dynamics of corals. Here, we first explored changes in coral juvenile abundance across three locations (lagoon, seaward west and east) at remote Aldabra Atoll (Seychelles) between 2015 and 2019, which spanned the 2015/16 global coral bleaching event. Secondly, we measured variation in coral recruit abundance on settlement tiles from two sites (lagoon, seaward reef) during August 2018–August 2019. Juvenile abundance decreased from 14.1 ± 1.2 to 7.4 ± 0.5 colonies m-2 (mean ± SE) during 2015–2016 and increased to 22.4 ± 1.2 colonies m-2 during 2016–2019. Whilst juvenile abundance increased two- to three-fold at the lagoonal and seaward western sites during 2016–2018 (from 7.7–8.3 to 17.3–24.7 colonies m-2), increases at the seaward eastern sites occurred later (2018–2019; from 5.8–6.9 to 16.6–24.1 colonies m-2). The composition of coral recruits on settlement tiles was dominated by Pocilloporidae (64–92% of all recruits), and recruit abundance was 7- to 47-fold higher inside than outside the lagoon. Recruit abundance was highest in October–December 2018 (2164 ± 453 recruits m-2) and lowest in June–August 2019 (240 ± 98 recruits m-2). As Acroporid recruit abundance corresponded to this trend, the results suggest that broadcast spawning occurred during October–December, when water temperature increased from 26 to 29°C. This study provides the first published record on coral recruit abundance in the Seychelles Outer Islands, indicates a rapid (2–3 years) increase of juvenile corals following a bleaching event, and provides crucial baseline data for future research on reef resilience and connectivity within the region.


Author(s):  
Alisa A. Abookire ◽  
Michael A. Litzow ◽  
Michael J. Malick ◽  
Benjamin Jeffrey Laurel

The Pacific cod (Gadus macrocephalus) fishery recently collapsed in the Gulf of Alaska after a series of marine heatwaves that began in 2014. To gauge the likelihood of population recovery following these extreme warming events, we investigate potential thermal stress on age-0 cohorts through a comprehensive analysis of juvenile cod abundance, condition, growth, and survival data collected from 15 years of beach seine surveys. Abundance was strongly negatively related to ocean temperature during the egg and larval phase (winter/spring), but age-0 cod were larger in the early summer following warm winter/spring temperatures. Body condition indices suggest that warm summers may improve energetic reserves prior to the first winter; however, there was no summer temperature effect on post-settlement growth or survival. Spatial differences in abundance, condition, or growth were not detected, and density-dependent effects were either weak or positive. While the positive effects of increased summer temperatures on juvenile condition may benefit overwintering survival, they cannot compensate for high pre-settlement mortality from warming winter/spring temperatures. We conclude the critical thermal bottleneck for juvenile abundance occurs pre-settlement.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1584
Author(s):  
Antonio J. Pérez-Luque ◽  
Francisco J. Bonet-García ◽  
Regino Zamora

Land abandonment is a major global change driver in the Mediterranean region, where anthropic activity has played an important role in shaping landscape configuration. Understanding the woodland expansion towards abandoned croplands is critical to develop effective management strategies. In this study, we analyze the colonization pattern of abandoned croplands by Quercus pyrenaica in the Sierra Nevada mountain range (southern Spain). We aimed to assess differences among populations within the rear edge of the Q. pyrenaica distribution. For this purpose, we characterized (i) the colonization pattern of Q. pyrenaica, (ii) the structure of the seed source (surrounding forests), and (iii) the abundance of the main seed disperser (Eurasian jay, Garrulus glandarius). The study was conducted in five abandoned croplands located in two representative populations of Q. pyrenaica located on contrasting slopes. Vegetation plots within three habitat types (mature forest, edge-forest and abandoned cropland) were established to compute the abundance of oak juveniles. The abundance of European jay was determined using data of bird censuses (covering 7 years). Our results indicate that a natural recolonization of abandoned croplands by Q. pyrenaica is occurring in the rear edge of the distribution of this oak species. Oak juvenile abundance varied between study sites. Neither the surrounding-forest structure nor the abundance of jays varied significantly between study sites. The differences in the recolonization patterns seem to be related to differences in the previous- and post-abandonment management.


2021 ◽  
Author(s):  
◽  
Simona Tiziana Boschetti

<p>Coral reefs are threatened by a range of human activities at both local and global scales. The result of these impacts has resulted in a worldwide decline in the coral reef ecosystems. Corals are the principle reef builders and the maintenance of their populations is fundamental for healthy reef ecosystems. Local environmental factors are critically important in shaping coral populations, particularly at the post-settlement phase, when young coral colonies are most vulnerable to disturbances. In this context, understanding the environmental factors that drive coral recruitment and affect coral survivorship in the early life history stages is vital to effectively manage coral reefs.  In this thesis I began by investigating the effect of abiotic and biological factors on coral recruitment and juvenile coral life history stages using settlement panels deployed in the Wakatobi Marine National Park (SE Sulawesi, Indonesia). My objectives were to assess the spatio-temporal variability in coral recruitment rates and juvenile abundance. I used a modelling approach to identify the environmental factors that affected the distribution and abundance patterns of corals. Then, I focused on the main environmental factors, identified from previously published research, affecting coral recruitment. I conducted a caging experiment to assess the impact of fish predation on coral juveniles. Finally, I analysed the development of the benthic community and the interactions between corals and benthic organisms in the first two years of colonisation of artificial bare surfaces.  I found high spatial and temporal variability in recruitment rates over seven years of data, values were lower than on other Indo-Pacific reefs and ranged from 9.6 (±8.21 SE) to 317.19 (±12.76 SE) rec. m⁻²; while juvenile abundance ranged from 4.2 (±1.49 SE) to 33 (±6.36 SE) juv. m⁻². The local characteristics of the sites, such as coral cover, influenced the distribution of coral colonies in early life history stages; furthermore differences in coral density between the two life history stages (juvenile and recruits) were consistent over time. However, no single or combination of factors adequately explained abundance patterns for either recruits or juveniles. Fish predation did not appear to be the main cause of coral post-settlement mortality in the Wakatobi and it affected only 10.8% of the coral juveniles in the experiment. In contrast, 58.51% of the coral juveniles were found to be overgrown by algae and other invertebrates, however only turf and green encrusting algae affected coral survivorship. Coral colony abundance and the number of interactions with other benthic organisms, especially crustose coralline algae (CCA) and sponges, increased over time on panels and they were different between the front and back side of the panels, which was attributed to differences in light and predation regimes. Coral recruitment was higher on older benthic communities, although none of the known coral recruitment promoters, such as CCA, or competitors, such as turf algae, were correlated with coral abundance.  My results show that changes in coral populations between the recruit and juvenile stages are likely driven by small-scale processes. The site characteristics determine the final patterns, which vary over time following temporal fluctuations in environmental factors. The effect of the interactions between algae and sponges with coral recruits and their influence on juvenile survivorship suggests these organisms having a role in coral recruitment success and highlight their importance as a focus for reef management. Furthermore, the use of long term studies allowed a better understanding of the high variability present in coral recruitment and the trends of the recruitment process, which are useful information for conservative purposes.</p>


2021 ◽  
Author(s):  
◽  
Simona Tiziana Boschetti

<p>Coral reefs are threatened by a range of human activities at both local and global scales. The result of these impacts has resulted in a worldwide decline in the coral reef ecosystems. Corals are the principle reef builders and the maintenance of their populations is fundamental for healthy reef ecosystems. Local environmental factors are critically important in shaping coral populations, particularly at the post-settlement phase, when young coral colonies are most vulnerable to disturbances. In this context, understanding the environmental factors that drive coral recruitment and affect coral survivorship in the early life history stages is vital to effectively manage coral reefs.  In this thesis I began by investigating the effect of abiotic and biological factors on coral recruitment and juvenile coral life history stages using settlement panels deployed in the Wakatobi Marine National Park (SE Sulawesi, Indonesia). My objectives were to assess the spatio-temporal variability in coral recruitment rates and juvenile abundance. I used a modelling approach to identify the environmental factors that affected the distribution and abundance patterns of corals. Then, I focused on the main environmental factors, identified from previously published research, affecting coral recruitment. I conducted a caging experiment to assess the impact of fish predation on coral juveniles. Finally, I analysed the development of the benthic community and the interactions between corals and benthic organisms in the first two years of colonisation of artificial bare surfaces.  I found high spatial and temporal variability in recruitment rates over seven years of data, values were lower than on other Indo-Pacific reefs and ranged from 9.6 (±8.21 SE) to 317.19 (±12.76 SE) rec. m⁻²; while juvenile abundance ranged from 4.2 (±1.49 SE) to 33 (±6.36 SE) juv. m⁻². The local characteristics of the sites, such as coral cover, influenced the distribution of coral colonies in early life history stages; furthermore differences in coral density between the two life history stages (juvenile and recruits) were consistent over time. However, no single or combination of factors adequately explained abundance patterns for either recruits or juveniles. Fish predation did not appear to be the main cause of coral post-settlement mortality in the Wakatobi and it affected only 10.8% of the coral juveniles in the experiment. In contrast, 58.51% of the coral juveniles were found to be overgrown by algae and other invertebrates, however only turf and green encrusting algae affected coral survivorship. Coral colony abundance and the number of interactions with other benthic organisms, especially crustose coralline algae (CCA) and sponges, increased over time on panels and they were different between the front and back side of the panels, which was attributed to differences in light and predation regimes. Coral recruitment was higher on older benthic communities, although none of the known coral recruitment promoters, such as CCA, or competitors, such as turf algae, were correlated with coral abundance.  My results show that changes in coral populations between the recruit and juvenile stages are likely driven by small-scale processes. The site characteristics determine the final patterns, which vary over time following temporal fluctuations in environmental factors. The effect of the interactions between algae and sponges with coral recruits and their influence on juvenile survivorship suggests these organisms having a role in coral recruitment success and highlight their importance as a focus for reef management. Furthermore, the use of long term studies allowed a better understanding of the high variability present in coral recruitment and the trends of the recruitment process, which are useful information for conservative purposes.</p>


2020 ◽  
Vol 40 (5) ◽  
pp. 498-511
Author(s):  
Maria M Criales ◽  
Ian C Zink ◽  
Michael B Robblee ◽  
Joan A Browder

Abstract A large number of roughneck shrimps, Rimapenaeus Pérez Farfante & Kensley, 1997, were collected in northwestern Florida Bay, southern Florida over four consecutive years (2000–2003) of monthly sampling during new-moon periods. Juveniles of Rimapenaeus spp. were more abundant than pink shrimp Farfantepenaeus duorarum (Burkenroad, 1939) juveniles, which are well-recognized and abundant inhabitants of Florida Bay. High Rimapenaeus spp. abundance was unexpected because the genus was previously reported only as occasional in Florida Bay. The populations of Rimapenaeus spp. were composed of late postlarvae and immature juveniles, suggesting that the northwestern border of Florida Bay serves as a nursery ground for this species. A clear seasonal recruitment pattern was observed with large peaks of postlarvae and small juveniles occurring in summer-fall and large juveniles in spring. The summer-fall peaks occurred during months with high mean water level and sea surface temperature; these two factors significantly predicted Rimapenaeus spp. abundance. Overnight hourly behavioral studies revealed that Rimapenaeus spp. juveniles were almost exclusively present in the water column during the dark hours of the ebb tide during current speed minimum. Juvenile abundance significantly differed between moon phases with shrimps being virtually absent during the illuminated full moon. These results indicate that Rimapenaeus spp. are phototactic negative, which may explain the low presence of this species in previous Florida Bay surveys conducted during daylight hours. This study highlights the previously unrecognized contribution of the abundance of juveniles of Rimapenaeus spp. to benthic-oriented crustacean communities of western Florida Bay and its border at the southwestern Florida Shelf.


2020 ◽  
Vol 645 ◽  
pp. 187-204
Author(s):  
PJ Rudershausen ◽  
JA Buckel

It is unclear how urbanization affects secondary biological production in estuaries in the southeastern USA. We estimated production of larval/juvenile Fundulus heteroclitus in salt marsh areas of North Carolina tidal creeks and tested for factors influencing production. F. heteroclitus were collected with a throw trap in salt marshes of 5 creeks subjected to a range of urbanization intensities. Multiple factor analysis (MFA) was used to reduce dimensionality of habitat and urbanization effects in the creeks and their watersheds. Production was then related to the first 2 dimensions of the MFA, month, and year. Lastly, we determined the relationship between creek-wide larval/juvenile production and abundance from spring and abundance of adults from autumn of the same year. Production in marsh (g m-2 d-1) varied between years and was negatively related to the MFA dimension that indexed salt marsh; higher rates of production were related to creeks with higher percentages of marsh. An asymptotic relationship was found between abundance of adults and creek-wide production of larvae/juveniles and an even stronger density-dependent relationship was found between abundance of adults and creek-wide larval/juvenile abundance. Results demonstrate (1) the ability of F. heteroclitus to maintain production within salt marsh in creeks with a lesser percentage of marsh as long as this habitat is not removed altogether and (2) a density-dependent link between age-0 production/abundance and subsequent adult recruitment. Given the relationship between production and marsh area, natural resource agencies should consider impacts of development on production when permitting construction in the southeastern USA.


<i>Abstract</i>.—The Striped Bass <i>Morone saxatilis</i> is an extremely important commercial and recreational species with a coastal migratory stock in the United States referred to as “Atlantic Striped Bass” managed by the Atlantic States Marine Fisheries Commission (ASMFC). Atlantic Striped Bass has four major contributing stocks, including the Chesapeake Bay, which comprises 70–90%, and the Hudson River, the Delaware River, and the Albemarle Sound/Roanoke River (A/R). The collapse of Atlantic Striped Bass in the late 1970s precipitated federal funding and legislation like the Emergency Striped Bass Study for research on causative factors of the decline and potential management recommendations. The 1981 ASMFC Interstate Fishery Management Plan (ISFMP) for Atlantic Striped Bass was nonmandatory and mostly ineffective until the 1984 Atlantic Striped Bass Conservation Act provided regulatory authorities to the ASMFC and the federal government to close fisheries in states out of compliance with ISFMPs. Restrictions and moratoria on harvest imposed in several states reduced mortality, and under favorable environmental conditions and given Striped Bass life history, multiple years of good recruitment occurred. This allowed target thresholds for female spawning stock biomass to be achieved and the ASMFC to declare recoveries of Atlantic Striped Bass stocks from 1995 to 1998. Regulation of river flows was particularly important for the A/R stock recovery, and this stock is presented as a case study. During the 20+ years following recovery, long-term monitoring by states in support of adaptive management was primarily supported by the stable, nonappropriated funding of the Sport Fish Restoration Act. Monitoring includes spawning stock characterization and biomass estimation, juvenile abundance surveys, cooperative coastwide tagging, and harvest data collection. Future issues facing the recovered Atlantic Striped Bass include interspecies effects of relatively high abundance, management of stocks separately instead of as a single coastal stock, and ecosystem-based fisheries management. Key lessons learned in the Atlantic Striped Bass recovery are that high societal value of the species provided the political impetus to create and fund the recovery program, coordination of management and enforcement efforts among all jurisdictions was essential for this migratory species, and fully funded long-term monitoring programs are critical to adaptive population management.


2018 ◽  
Vol 75 (11) ◽  
pp. 1773-1777 ◽  
Author(s):  
Heather Dawn Bowlby

The panmictic population of American eel (Anguilla rostrata) is at risk, making any region that supports enhanced production important from a recovery perspective. Strong glass eel runs to a small number of rivers along the Atlantic coast of Nova Scotia are thought to indicate high productivity, partially buffering declines occurring in other regions. However, contrary to glass eel indices of recruitment, an index representing older juveniles has strongly declined in riverine habitats throughout Nova Scotia from 1995 to 2005, with evidence of substantial differences in relative abundance among watersheds. This suggests that glass eel indices may not reflect trends of older juveniles and consequently that the contribution of Atlantic coast rivers to population persistence may be overstated. More recent monitoring from two rivers shows divergent trends in juvenile eel abundance, underscoring the importance of widespread surveys to assess changes in regional productivity. Further evaluation of the watershed characteristics associated with higher juvenile abundance would aid in understanding differences in productivity among watersheds and possibly in facilitating increased spawning escapement for American eel.


Sign in / Sign up

Export Citation Format

Share Document