lot sizing and scheduling
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 47)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
pp. 107932
Author(s):  
Cyril Koch ◽  
Taha Arbaoui ◽  
Yassine Ouazene ◽  
Farouk Yalaoui ◽  
Humbert De Brunier ◽  
...  

2021 ◽  
Vol 16 (04) ◽  
pp. 82-114
Author(s):  
Michael Ferreira Bertulucci ◽  
Giovanna Abreu Alves ◽  
Victor Claudio Bento de Camargo

Purpose - This study presents an extension to a model in the literature for lot-sizing and scheduling in a small foundry with multiple alternate furnaces. The purpose of the model is to minimize delays and inventory costs. In addition, it determines the best use of the load capacity in the furnaces. Theoretical framework – Lot-sizing in foundries in the marketplace is a subject of academic interest due to its applicability and mathematical and computational complexity. Many papers address the production problem in foundries with a single furnace, however, few papers address the possibility of multiple furnaces. Design/methodology/approach - Mathematical modeling was used to represent the lot-sizing and scheduling problem in a small foundry. Data from the company's order books were collected and model validation questionnaires were applied. Findings - The extended model was able to generate good production plans at different planning horizons, with better performance than the current methods obtained by the company. Originality/value - the extension of the model contributes to the literature by addressing the existence of multiple non-simultaneous furnaces, a feature that has not been greatly explored. A comparison with other models is performed to indicate the most suitable model for actual application. Keywords: Alloys scheduling. Foundry. Lot size. Mixed integer programming.


Author(s):  
Willy Alves de Oliveira Soler ◽  
Maristela Oliveira Santos ◽  
Maria do Socorro Nogueira Rangel

The purpose of this paper is to propose mathematical models to represent a lot sizing and scheduling problem on multiple production lines that share scarce resources and to investigate the computational performance of the proposed models. The main feature that differentiates this problem from others in the literature is that the decision on which lines to organize should be taken considering the availability of the necessary resources. The optimization criterion is the minimization of the costs incurred in the production process (inventory, backlogging, organization of production lines, and sequence-dependent setup costs). Nine mixed integer optimization models to represent the problem are given and, also, the results of an extensive computational study carried out using a set of instances from the literature. The computational study indicates that an efficient formulation, able to provide high quality solutions for large sized instances, can be obtained from a classical model by making the binary production variables explicit, using the facility location reformulation as well as the single commodity flow constraints to eliminate subsequences. Moreover, from the results, it is also clear that the consideration of scarce resources makes the problem significantly more difficult than the traditional one.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106810
Author(s):  
Juan Piñeros ◽  
Alyne Toscano ◽  
Deisemara Ferreira ◽  
Reinaldo Morabito

Sign in / Sign up

Export Citation Format

Share Document