valgus correction angle
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Kohei Kawaguchi ◽  
Hiroshi Inui ◽  
Shuji Taketomi ◽  
Ryota Yamagami ◽  
Kenichi Kono ◽  
...  

Abstract Background: The choice of mobile bearing (MB) thickness is essential for obtaining successful results after mobile-bearing Oxford unicompartmental knee arthroplasty (UKA). This study aimed to investigate the effects of a 1-mm difference in bearing thickness on intraoperative MB movement and intraoperative knee kinematics in Oxford UKAs.Methods: We prospectively investigated the intraoperative MB movement and knee kinematics of 25 patients who underwent Oxford UKAs when surgeons didn’t know which bearing thickness to choose with 1-mm difference. A trial tibial component that was scaled every 2 mm was used to measure the intraoperative MB movement, and the tibial internal rotation relative to the femur and the knee varus angle was simultaneously evaluated using the navigation system as the knee kinematics. We separately evaluated sets of two MB thicknesses with 1-mm differences, and we compared the intraoperative parameters at maximum extension; 30º, 45º, 60º, and 90º flexion; and maximum flexion between the thicker MB (thick group) and the thinner MB (thin group).Results: The MB in the thin group was located significantly posteriorly at 90º flexion compared with that in the thick group; however, there were no differences at the other flexion angles. There was significantly less tibial internal rotation in the thin group at 90º flexion than that in the thick group; however, there were no differences at the other flexion angles. The knee varus angles in the thick group were significantly smaller than those in the thin group by approximately one degree at all angles other than at 30º and 45º flexion. Conclusion: The thicker MB could bring the less posterior MB movement and the more tibial internal rotation at 90º flexion, additionally the valgus correction angle in the thicker MB should be paid attention. These results could help surgeons to decide the thickness of MBs when they wonder the thickness of MB.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Aobo Zhang ◽  
Qing Han ◽  
Bingpeng Chen ◽  
Chenyu Wang ◽  
Xue Zhao ◽  
...  

Background and purpose. A new method of three-dimensional (3D) reconstruction technology was used to take place of X-ray in measuring valgus correction angle (VCA) of both DDH patients and normal volunteers to improve precision. Two different ways to define VCA according to the various conditions of patients were compared and analyzed. Methods. Bilateral VCA of 50 DDH patients and 56 normal volunteers were measured by Mimics software in the 3D method and X-ray in 2D. Two VCA (the upper VCA and the lower VCA) were measured in both two methods. Every VCA was measured by observer A and observer B for twice separately. The statistical analyses of the differences were calculated among the measurements of the VCA. Results. The mean value of the upper VCA measured in 3D was 4.95°±0.76° in DDH group and 5.56°±0.62° in the normal group with significant difference (t=−6.457, p<0.01). The VCA of DDH group and normal group measured by 3D was larger than 2D, both the upper VCA and the lower VCA. The differences indicated statistically significant. The mean value of lower VCA was 0.60° smaller than the mean value of upper VCA in normal volunteers. The mean value of the lower VCA was 0.58° larger than the mean value of the upper VCA in DDH patients. Conclusions. Compared to X-ray, 3D reconstruction technology is more accurate without conventional limitations. The lower VCA of DDH patients should be regarded as the femoral intramedullary guide angle in TKA, especially for patients with femoral deformities.


Sign in / Sign up

Export Citation Format

Share Document