inverse knudsen number
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Nina Kersting ◽  
Nicolas Borghini ◽  
Steffen Feld

Considering the kinetic Boltzmann equation in the limit of very few collisions, we study the evolution of the phase space distribution of bottomonia interacting with an expanding gas of massless partons. We investigate the scaling of the anisotropic flow coefficients on the initial eccentricities and the inverse Knudsen number, and compute their transverse momentum dependence.


2014 ◽  
Vol 577 ◽  
pp. 289-292
Author(s):  
Shuai Zhang ◽  
Peng Yun Song

Ultrathin gas film lubrication has been widely used in recent years, such as dry gas seal face gas lubrication, gas lubrication in the hard disk drive, etc. The rarefied gas effect must be considered when the gas film thickness is very thin. In order to analyze, compare, and select the appropriate rarefied effect model on gas lubrication, a comparative analysis has been carried out on the influence laws of the Poiseuille flow rate and the ratio of the effective viscosity coefficients and the dynamic viscosity, μeff/μ, with inverse Knudsen number, D ,or Knudsen number, Kn, as to different models. The results show that when inverse Knudsen number increases or Knudsen number decreases, the Poiseuille flow rate and the ratio of the effective viscosity coefficients and the dynamic viscosity,μeff/μ, of different models approach to each other. However, there are significant differences as to different models when the Knudsen number is large, and only several models from Hwang, Veijola, Peng etc agree with Fukui’s model.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Chin-Hsiang Cheng ◽  
Mei-Hsia Chang

The optimization of the surface shape for a slider to meet the specified load demands under an ultra-thin film lubrication condition has been performed in this study. The optimization process is developed based on the conjugate gradient method in conjunction with a direct problem solver, which is built based on the rarefied-flow theory. The direct problem solver is able to predict the pressure distributions of the rarefied gas flows in the slip-flow, transition-flow, and molecular-flow regimes with a wide range of characteristic inverse Knudsen number. First, the validity of the direct problem solver has been verified by a comparison with the existing information for some particular cases, and then the developed direct problem solver is incorporated with the conjugate gradient method for optimizing the shape profile of the slider surface. The performance of the present optimization approach has also been evaluated. Results show that the shape profile of the slider surface can be efficiently optimized by using the present approach. Thus, a number of cases under various combinations of influential parameters, involving the characteristic inverse Knudsen number and the bearing numbers in the x- and y-directions, are investigated.


1961 ◽  
Vol 10 (3) ◽  
pp. 371-384 ◽  
Author(s):  
Roddam Narasimha

Several interesting features of the flow field in free-molecule flow through an orifice are discussed. An estimate is then made of the deviation of the mass flow $\dot{m}$ through the orifice from its limiting free-molecule value $\dot{m}$ for small departures from the limit. Using an iteration method proposed by Willis, it is shown that this deviation is of the first order in ε, the inverse Knudsen number, defined as the ratio of the radius of the hole to the mean free path in the gas at upstream infinity. An estimate of the coefficient is obtained making some reasonable assumptions about the three-dimensional nature of the flow, and the value so derived, giving $\dot{m}=\dot{m}(1+0.25\epsi)$, shows fair agreement with the measurements of Liepmann. It appears that ‘nearly’ free-molecular conditions prevail up to ε ∼ 1.0.


Sign in / Sign up

Export Citation Format

Share Document