dynamic viscosity
Recently Published Documents


TOTAL DOCUMENTS

716
(FIVE YEARS 230)

H-INDEX

40
(FIVE YEARS 10)

2022 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Aleksandr G. Novoselov ◽  
Sergei A. Sorokin ◽  
Igor V. Baranov ◽  
Nikita V. Martyushev ◽  
Olga N. Rumiantceva ◽  
...  

This article puts forward arguments in favor of the necessity of conducting complex measurements of molecular transport coefficients that quantitatively determine the coefficients of dynamic viscosity, thermal diffusivity and molecular diffusion. The rheological studies have been carried out on the viscometers of two types: those with a rolling ball (HÖPPLER® KF 3.2.), and those with a rotary one (Rheotest RN 4.1.). The thermophysical studies have been performed using the analyzer Hot Disk TPS 2500S. The measurements have been taken in the temperature range of 283 to 363 K. The concentration of dry substances has varied from 16.2 to 77.7% dry wt. An empirical equation for calculating the density of aqueous solutions of beet molasses has been obtained. The diagrams of the dependence of the dynamic viscosity on the shear rate in the range of 1 s−1 to 500 s−1 at different temperatures have been provided. The diagrams of the dependence of the coefficients of thermal conductivity and thermal diffusivity on the temperature and the concentration of dry substances have been presented, and empirical equations for their calculation have been obtained. The findings can be used for engineering calculations of hydrodynamic and heat-exchange processes in biotechnological equipment.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Valéry Tusambila Wadi ◽  
Özkan Özmen ◽  
Abdullah Caliskan ◽  
Mehmet Baki Karamış

Purpose This paper aims to evaluate the dynamic viscosity and thermal conductivity of halloysite nanotubes (HNTs) suspended in SAE 5W40 using machine learning methods (MLMs). Design/methodology/approach A two-step method with surfactant was selected to prepare nanolubricants in concentrations of 0.025, 0.05, 0.1 and 0.5 wt%. Thermal conductivity and dynamic viscosity of nanofluids were ascertained over the temperature range of 25–70 °C, with an increment step of 5 °C, using a KD2-Pro analyser device and a digital viscometer MRC VIS-8. Additionally, four different MLMs, including Gaussian process regression (GPR), artificial neural network (ANN), support vector machine (SVM) and decision tree (DT), were used for predicting dynamic viscosity and thermal conductivity by using nanoparticle concentration and temperature as input parameters. Findings According to the achieved results, the dynamic viscosity and thermal conductivity of nanolubricants mostly increased with the rise of nanoparticle concentration in the base oil. All the proposed models, especially GPR with root mean square error mean values of 0.0047 for dynamic viscosity and 0.0016 for thermal conductivity, basically showed superior ability and stability to estimate the viscosity and thermal conductivity of nanolubricants. Practical implications The results of this paper could contribute to optimising the cost and time required for modelling the thermophysical properties of lubricants. Originality/value To the best of the author’s knowledge, in this available literature, there is no paper dealing with experimental study and prediction of dynamic viscosity and thermal conductivity of HNTs-based nanolubricant using GPR, ANN, SVM and DT.


Tribologia ◽  
2021 ◽  
Vol 297 (3) ◽  
pp. 45-56
Author(s):  
Krzysztof Wierzcholski ◽  
Jacek Gospodarczyk

This paper presents recent progress in the knowledge concerning the stochastic theory of bio- hydrodynamic lubrication with a phospholipids bilayer. On the basis of experimental measurements and analytical solutions, the research concerns the determination of the random expectancy values of load carrying capacity, the friction coefficient, and synovial fluid dynamic variations. After numerous measurements, it directly follows that the random density function of the gap height in the human joint usually indicates a disorderly increases and decreases in the height. Such irregular gap height variations have an important influence on the random synovial bio-fluid dynamic viscosity. This finally leads to the friction coefficient and cartilage wear changes of cooperating bio- surfaces. The main topic of this paper relates to the expectancy values of the tribology parameters localized inside the variable stochastic standard deviation intervals of the human joint gap height. The results obtained finally indicate the influence of the random roughness and growth of living biological cartilage surfaces on the expectancy values of the synovial fluid dynamic viscosity, load carrying capacity and friction forces in human hip joints.


2021 ◽  
Author(s):  
Krishna Pillai ◽  
Ahmed H. Mekkawy ◽  
Sarah Valle ◽  
Javed Akhter ◽  
David L Morris

Respiratory diseases such as cystic fibrosis, COPD, bronchiectasis asthma and COVID-19 are difficult to treat owing to viscous secretions in the airways that evade mucocilliary clearance. Since earlier studies have shown success with BromAc as mucolytic agent for treating a rare disease known as pseudomyxoma peritonei (PMP), we tested the formulation on two gelatinous airway representative sputa models, in order to determine whether similar efficacy exist. The sputum (1.5 ml) lodged in an endotracheal tube was treated to aerosolised N-acetylcysteine, bromelain, or their combination (BromAc) using a nebuliser with 6.0 ml of the agents in phosphate buffer saline, over 25 min. Controls received phosphate buffer saline. The dynamic viscosity was measured before and after treatment using a capillary tube method, whilst the sputum flow (ml/sec) was assessed using a 0.5 ml pipette. Finally, the sequestered agents (concentration) in the sputa after treatment were quantified using standard bromelain and N-acetylcysteine chromogenic assays. Results indicated that bromelain and N-acetylcysteine affected both the dynamic viscosities and pipette flow in the two sputa models, with changes in the former parameter having immense effect on the latter. BromAc showed a greater rheological effect on both the sputa models compared to individual agents. Further, correlation was found between the rheological effects and the concentration of agents in the sputa. Hence, this study indicates that BromAc may be used as a successful mucolytic for clearing airway congestion caused by thick mucinous immobile secretion, however further studies with patient sputum samples using aerosol BromAc is warranted.


Author(s):  
Abdul Hamid Hamisa ◽  
Wan Hamzah Azmi ◽  
Taib Mohd Yusof ◽  
Mohd Farid Ismail ◽  
Anwar Ilmar Ramadhan

The enhancement of nanolubricant rheological properties can improve the performance of automotive air-conditioning systems. The rheological properties of the TiO2/POE nanolubricant were investigated in this study at 0.01 to 0.1% volume concentrations and temperatures ranging from 0 to 100°C. TiO2 nanoparticles were dispersed in the base lubricant of Polyol-ester (POE RL68H) lubricant in two steps. The dynamic viscosity was measured with an Anton-Paar Rotational Rheometer. According to the findings, the TiO2/POE nanolubricant behaved as Newtonian fluids at all volume concentrations and temperatures. The dynamic viscosity increment of nanolubricants up to 1.75% only occurred for 0.1% volume concentration and temperature of 90 to 100°C. Meanwhile, when compared to POE lubricant, nanolubricants with volume concentrations of 0.01 and 0.05% showed a decrement trend in dynamic viscosity of up to 1.8%. Finally, the TiO2/POE nanolubricant improved the rheological properties of the POE lubricant for use in automotive air-conditioning systems.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Lucia Blšáková ◽  
Tomáš Gregor ◽  
Matej Mešťánek ◽  
Luděk Hřivna ◽  
Vojtěch Kumbár

The aim of this study was to use unconventional malts in beer production and observe their effect on the wort viscosity. Six malts were analysed in this study—barley, black barley, oat, wheat, rye, and corn. Firstly, the parameters of cereals were measured after the malting process in an experimental malting house and wort production. Samples were analysed in each phase of the mashing process. Carbohydrate contents and viscosities were analytically determined from the samples. The resulting values of the dynamic viscosity were significantly higher than the values obtained by other authors, ranging from 3.4 up to 35.5 mPa·s−1. This study also confirmed the hypothesis that states that the breakdown of carbohydrates leads to a decrease in viscosity. Values measured in the black barley malt sample were higher when compared with light barley malt. Unconventional malts had a higher viscosity and were thus more difficult to filter. If these types of malts are used it is recommended to add barley malts or malts with a higher enzyme activity to them.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Umar Khan ◽  
Basharat Ullah ◽  
Wahid Khan ◽  
Adnan ◽  
Ilyas Khan ◽  
...  

Nanofluids are solid-liquid mixtures that have a dispersion of nanometer-sized particles in conventional base fluids. The flow and heat transmission in an unstable mixed convection boundary layer are affected by the thermal conductivity and dynamic viscosity uncertainty of a nanofluid over a stretching vertical surface. There is time-dependent stretching velocity and surface temperature instability in both the flow and temperature fields. It is possible to scale the governing partial differential equations and then solve them using ordinary differential equations. Cu and Al2O3 nanofluids based on water are among the possibilities being investigated. An extensive discussion has been done on relevant parameters such as the unsteadiness parameter and the mixed convection parameter's effect on solid volume fraction of nanoparticles. In addition, alternative nanofluid models based on distinct thermal conductivity and dynamic viscosity formulas are examined for their flow and heat transmission properties. On the basis of the comparison, it is concluded that the results are spot on for steady state flow.


2021 ◽  
Vol 30 (5) ◽  
pp. 84-97
Author(s):  
I. A. Pustovalov

Introduction. The aim of the research project is to study the effect produced by one type of carbon nanostructures, or astralenes, on processes of extinguishing oil product flame using finely sprayed water. Materials and research methods. The research is focused on fire extinguishing suspensions used in modular water mist installations for the fire extinguishing of oil products. Astralene-modified distilled water, having the volumetric concentration of nanostructures equal to 0.05–1.0 percent, was used as a fire extinguishing substance under research. The experiment was focused on the study of thermophysical characteristics of fire extinguishing liquids, such as density, dynamic viscosity, surface tension, specific heat of vaporization. Also, studies were carried out to identify the rate of evaporation, the distribution of droplet sizes of sprayed fire extinguishing compositions, and the time needed to extinguish the model source of ignition of oil products.Research results. The dispersion of nanostructures of fire-extinguishing liquids allows to increase their density, surface tension by 20.6 %, increase the specific heat of vaporization if the volumetric concentration of astralenes is equal to 0.25 and 0.5 %, and boost the dynamic viscosity by 6.68–15.38 % at the temperature of 20 °С. The research was carried out to find the rate of evaporation of droplets of the modified fire-extinguishing liquid. It was found that an increase in the volumetric concentration of nanostructures from 0.05 to 0.5 % causes reduction in the evaporation rate.The droplet speed increases if the volumetric dispersion of astalenes goes up to 0 to 0.25 %. However, a further increase in the volumetric concentration of astralenes to 1.0 % causes a reduction in their speed. The extinguishing time was identified using a laboratory fire extinguishing installation. The distribution of droplet sizes of fire-extinguishing compositions is in the range of 20 to 160 microns. The fire extinguishing capacity of the installation was highest if a fire extinguishing composition had a 0.5 % volumetric concentration of astralenes.Conclusions. The modification of a fire extinguishing composition by carbon nanostructures leads to a change in its thermophysical characteristics. The addition of this composition to the installation, used at facilities involved in the processing of petroleum products, will increase its fire extinguishing ability. Further areas of research may include the development of astralene stabilization methods for suspensions and adaptation to low temperatures.


2021 ◽  
Vol 40 (6) ◽  
pp. 1657-1682
Author(s):  
M. T. Akolade ◽  
A. S. Idowu ◽  
B. O. Falodun ◽  
J. U. Abubakar

The boundary layer flow of temperature-dependent variable thermal conductivity and dynamic viscosity on flow, heat, and mass transfer of magnetized and dissipative Casson fluid over a slenderized stretching sheet has been studied. The model explores the Cattaneo-Christov heat flux paradox instead of the Fourier’s law plus the stratifications impact. The variable temperature-dependent plastic dynamic viscosity and thermal conductivity were assumed to vary as a linear function of temperature. The governing systems of equations in PDEs were transformed into non-linear ordinary differential equations using the suitable similarity transformations, hence the approximate solutions were obtained using Chebyshev Spectral Collocation Method (CSCM). Effects of pertinent flow parameters on concentration, temperature, and velocity profiles are presented graphically and tabled, therein, thermal relaxation and wall thickness parameters slow down the distribution of the flowing fluid. A rise in Casson parameter, temperature-dependent thermal conductivity, and velocity power index parameter increases the skin friction thus leading to a decrease in energy and mass gradient at the wall, also, temperature gradient attain maximum within 0.2 - 1.0 variation of Casson parameter.


Sign in / Sign up

Export Citation Format

Share Document