homoclinic classes
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 37 (7) ◽  
pp. 1023-1040
Author(s):  
Ru Song Zheng
Keyword(s):  


2020 ◽  
pp. 1-26
Author(s):  
SNIR BEN OVADIA

Abstract The papers [O. M. Sarig. Symbolic dynamics for surface diffeomorphisms with positive entropy. J. Amer. Math. Soc.26(2) (2013), 341–426] and [S. Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. J. Mod. Dyn.13 (2018), 43–113] constructed symbolic dynamics for the restriction of $C^r$ diffeomorphisms to a set $M'$ with full measure for all sufficiently hyperbolic ergodic invariant probability measures, but the set $M'$ was not identified there. We improve the construction in a way that enables $M'$ to be identified explicitly. One application is the coding of infinite conservative measures on the homoclinic classes of Rodriguez-Hertz et al. [Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Comm. Math. Phys.306(1) (2011), 35–49].



Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1232
Author(s):  
Manseob Lee

In this paper, we prove that for a generically C1 vector field X of a compact smooth manifold M, if a homoclinic class H(γ,X) which contains a hyperbolic closed orbit γ is measure expansive for X then H(γ,X) is hyperbolic.



2019 ◽  
Vol 63 (1) ◽  
pp. 217-228
Author(s):  
Mário Bessa ◽  
Maria Joana Torres

AbstractWe begin by defining a homoclinic class for homeomorphisms. Then we prove that if a topological homoclinic class Λ associated with an area-preserving homeomorphism f on a surface M is topologically hyperbolic (i.e. has the shadowing and expansiveness properties), then Λ = M and f is an Anosov homeomorphism.



2019 ◽  
Vol 148 (3) ◽  
pp. 1195-1206
Author(s):  
Pablo G. Barrientos ◽  
Shin Kiriki ◽  
Yushi Nakano ◽  
Artem Raibekas ◽  
Teruhiko Soma
Keyword(s):  


2019 ◽  
Vol 17 (1) ◽  
pp. 990-997
Author(s):  
Manseob Lee

Abstract In this paper, we show that for generic C1, if a flow Xt has the shadowing property on a bi-Lyapunov stable homoclinic class, then it does not contain any singularity and it is hyperbolic.





2019 ◽  
Vol 372 (2) ◽  
pp. 755-802
Author(s):  
Christian Bonatti ◽  
Jinhua Zhang


2019 ◽  
Vol 19 (5) ◽  
pp. 1765-1792 ◽  
Author(s):  
Dawei Yang ◽  
Jinhua Zhang

We study a rich family of robustly non-hyperbolic transitive diffeomorphisms and we show that each ergodic measure is approached by hyperbolic sets in weak$\ast$-topology and in entropy. For hyperbolic ergodic measures, it is a classical result of A. Katok. The novelty here is to deal with non-hyperbolic ergodic measures. As a consequence, we obtain the continuity of topological entropy.



Sign in / Sign up

Export Citation Format

Share Document