triangular toeplitz matrix
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 15 (1) ◽  
pp. 085-094
Author(s):  
Mariatul Kiftiah ◽  
Yudhi Yudhi ◽  
Alvi Yanitami

Euler-Cauchy equation is the typical example of a linear ordinary differential equation with variable coefficients. In this paper, we apply the alternative method to determine the particular solution of Euler-Cauchy nonhomogenous with polynomial and natural logarithm form. An explicit formula of the particular solution is derived from the use of an upper triangular Toeplitz matrix. The study showed that this method could be finding the particular solution for the Euler-Cauchy equation


2021 ◽  
Vol 9 (1) ◽  
pp. 103-111
Author(s):  
Maryam Shams Solary ◽  
Alexander Kovačec ◽  
Stefano Serra Capizzano

Abstract Let L be the infinite lower triangular Toeplitz matrix with first column (µ, a 1, a 2, ..., ap , a 1, ..., ap , ...) T and let D be the infinite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. Bünger and Rump have shown that if p = 2 and certain linear inequalities between the parameters µ, a 1, a 2, are satisfied, then the singular values of any finite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for µ, a 1, ..., ap . It depends on the asymptotics in µ of the l 2-norm of certain sequences defined by linear recurrences, in which these parameters enter. We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations.


2019 ◽  
Vol 7 ◽  
Author(s):  
ANIRBAN BASAK ◽  
ELLIOT PAQUETTE ◽  
OFER ZEITOUNI

We consider the spectrum of additive, polynomially vanishing random perturbations of deterministic matrices, as follows. Let$M_{N}$be a deterministic$N\times N$matrix, and let$G_{N}$be a complex Ginibre matrix. We consider the matrix${\mathcal{M}}_{N}=M_{N}+N^{-\unicode[STIX]{x1D6FE}}G_{N}$, where$\unicode[STIX]{x1D6FE}>1/2$. With$L_{N}$the empirical measure of eigenvalues of${\mathcal{M}}_{N}$, we provide a general deterministic equivalence theorem that ties$L_{N}$to the singular values of$z-M_{N}$, with$z\in \mathbb{C}$. We then compute the limit of$L_{N}$when$M_{N}$is an upper-triangular Toeplitz matrix of finite symbol: if$M_{N}=\sum _{i=0}^{\mathfrak{d}}a_{i}J^{i}$where$\mathfrak{d}$is fixed,$a_{i}\in \mathbb{C}$are deterministic scalars and$J$is the nilpotent matrix$J(i,j)=\mathbf{1}_{j=i+1}$, then$L_{N}$converges, as$N\rightarrow \infty$, to the law of$\sum _{i=0}^{\mathfrak{d}}a_{i}U^{i}$where$U$is a uniform random variable on the unit circle in the complex plane. We also consider the case of slowly varying diagonals (twisted Toeplitz matrices), and, when$\mathfrak{d}=1$, also of independent and identically distributed entries on the diagonals in$M_{N}$.


Sign in / Sign up

Export Citation Format

Share Document