coulomb stress analysis
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 873 (1) ◽  
pp. 012033
Author(s):  
Kevin Hanyu Clinton Wulur ◽  
Iman Suardi ◽  
Sesar Prabu Dwi Sriyanto ◽  
Yusuf Hadi Perdana

Abstract On September 28, 2018, the Palu-Koro fault released the accumulated stress that caused the earthquake. An earthquake with magnitude 7.5 caused large and massive damage around Palu. There were many aftershocks along the Palu-Koro fault. This research aims to calculate a model of spatial Coulomb stress based on this event to find a correlation between mainshock and the aftershocks. The slip distribution was used as an input of the spatial stress Coulomb modeling to increase the accuracy. We use the Teleseismic Body-Wave Inversion method to calculate slip distribution along the fault plane. As a result, this earthquake was generated by the Palu-Koro fault movement with Mw 7.48, strike 350°, dip angle 67°, and rake -9°. There are three asperity zones along the fault plane located in the north and southern parts of the fault plane. The location of the most energy discharge is in the south asperity zone of the fault plane model with a maximum slip value of 1.65 meters. The spatial Coulomb stress change of this event shows that aftershocks concentration are in areas experiencing increased stress after the earthquake.


2021 ◽  
Vol 80 (7) ◽  
Author(s):  
Austin Madson ◽  
Yongwei Sheng

AbstractIncreased demand for power generation coupled with changing seasonal water uncertainty has caused a worldwide increase in the construction of large hydrologic engineering structures. That said, the soon-to-be-completed Grand Ethiopian Renaissance Dam (GERD) will impound the Blue Nile River in Western Ethiopia and its reservoir will encompass ~ 1763 km2 and store ~ 67 Gt (km3) of surface water. The impoundment will undergo maximum seasonal load changes of ~ 28 to ~ 36 Gt during projected seasonal hydroelectric operations. The GERD impoundment will cause significant subsurficial stresses, and could possibly trigger seismicity in the region. This study examines Coulomb stress and hydrologic load centroid movements for several GERD impoundment and operational scenarios. The maximum subsurficial Coulomb stress applied on optimally oriented fault planes from the full impoundment is ~ 186 kPa and over 30% of our model domain incurs Coulomb stresses ≥ 10 kPa, regardless of the impoundment period length. The main driver behind Coulomb stress and load centroid motion during impoundment is the annual, accumulated daily reservoir storage change. The maximum Coulomb stresses from the highest amplitude season of five long-term operational scenarios are around 36, 33, 29, 41, and 24% of the total maximum stresses from the entire GERD impoundment. Variations in annual Coulomb stresses during modeled GERD operations are attributed to the seasonal load per unit area, and partially to the initial seasonal water level. The spatial patterns and amplitudes of these stress tensors are closely linked to both the size and timing of GERD inflow/outflow rates, and an improved understanding of the magnitude and extent of these stresses provides useful information to water managers to better understand potential reservoir triggered seismic events from several different operational and impoundment strategies.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Angela Saraò ◽  
Laura Peruzza

<p>We investigate the seismicity occurred in the Po area, in the period July 2011-June 1012, by means of moment tensor and we use our set of revised focal mechanisms - computed for M&gt; 3.7 earthquakes - to evaluate Coulomb elastic stress changes in order to detect potential intermediate-distance faults interaction, and the main features of this complex structural system.</p>


Sign in / Sign up

Export Citation Format

Share Document