moment tensor
Recently Published Documents


TOTAL DOCUMENTS

1075
(FIVE YEARS 311)

H-INDEX

59
(FIVE YEARS 6)

Author(s):  
Eduardo Huesca-Pérez ◽  
Edahí Gutierrez-Reyes ◽  
Luis Quintanar

ABSTRACT The Gulf of California (GoC) is a complex tectonic boundary that has been instrumented in the past several decades to record broadband seismograms. This volume of data has allowed us to study several source parameters systematically. Before, only a few source parameters of earthquakes greater than magnitude five had been studied in the GoC area. We re-examined the focal mechanisms of several earthquakes in the southern GoC that occurred over the last 20 yr using local–regional distance broadband seismograms. These focal mechanisms were then used as input data to retrieve the time–space history of the rupture for each earthquake. This work contributes to the study of 25 rupture-process models computed with the method proposed by Yagi et al. (1999). To investigate more about the nature of the seismicity in the GoC, we also calculated the non-double-couple component of moment tensors for 45 earthquakes. Previous studies (e.g., Ortega et al., 2013, 2016) have shown that non-double-couple components from moment tensors in this region are associated with complex faulting, suggesting that oblique faults or several parallel faults are interacting simultaneously. Our results show that, at least for moderate earthquakes (5 < M < 6), rupture processes in the GoC show a complex interaction between fault systems. It is revealed on the important contribution of non-double-couple component obtained in the full moment tensor analysis.


Author(s):  
Catur Cahyaningsih

Sulawesi Island is the active tectonic region, where the tectonic architecture and potential earthquake sources until now remain largely unknown. The worst earthquake, an Mw 7.5 on September 28, 2018, in Palu, Indonesia, was caused catastrophic damage to life and property. The earthquake has highlighted the urgent need to raise knowledge of the cause of possible large future earthquakes and vulnerability. The main objective for this project is to create a thorough earthquake probabilistic hazard analysis map of the region, which is presently unavailable to better prepare for future earthquakes. The neotectonic and structural map was created using was supplemented with the 30-m resolution Shuttle Radar Topography Mission, Centroid Moment Tensor (CMT) solution, and seismologic data. The results demonstrate that faulting controls the geometry and the majority of these faults are active and capable of causing medium to large magnitude earthquakes with moment magnitudes ranging from 6.2 to 7.5 from 44 seismic sources. Our results show Sulawesi's northern deformation regimes have high seismicity risk and vulnerability. This study contributes a realistic seismic source for the Sulawesi neotectonic area particularly at the northwest, north, and east deformation regime, to understand the key large future earthquakes.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Fengchang Bu ◽  
Lei Xue ◽  
Mengyang Zhai ◽  
Xiaolin Huang ◽  
Jinyu Dong ◽  
...  

AbstractAcoustic emission (AE) characterization is an effective technique to indirectly capture the failure process of quasi brittle rock. In previous studies, both experiments and numerical simulations were adopted to investigate the AE characteristics of rocks. However, as the most popular numerical model, the moment tensor model (MTM) cannot be constrained by the experimental result because there is a gap between MTM and experiments in principle, signal processing and energy analysis. In this paper, we developed a particle-velocity-based model (PVBM) that enabled direct monitoring and analysis of the particle velocity in the numerical model and had good robustness. The PVBM imitated the actual experiment and could fill in gaps between the experiment and MTM. AE experiments of marine shale under uniaxial compression were carried out, and the results were simulated by MTM. In general, the variation trend of the experimental result could be presented by MTM. Nevertheless, the magnitudes of AE parameters by MTM presented notable differences of more than several orders of magnitude compared with those by the experiment. We sequentially used PVBM as a proxy to analyse these discrepancies and systematically evaluate the AE characterization of rocks from the experiment to numerical simulation, considering the influence of wave reflection, energy geometrical diffusion, viscous attenuation, particle size and progressive deterioration of rock material. The combination of MTM and PVBM could reasonably and accurately acquire AE characteristics of the actual AE experiment of rocks by making full use of their respective advantages.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Marco Giovanni Malusà ◽  
Enrico Brandmayr ◽  
Giuliano Francesco Panza ◽  
Fabio Romanelli ◽  
Simona Ferrando ◽  
...  

AbstractCarbon dragged at sub-arc depths and sequestered in the asthenospheric upper mantle during cold subduction is potentially released after millions of years during the breakup of continental plates. However, it is unclear whether these deep-carbon reservoirs can be locally remobilized on shorter-term timescales. Here we reveal the fate of carbon released during cold subduction by analyzing an anomalously deep earthquake in December 2020 in the lithospheric mantle beneath Milan (Italy), above a deep-carbon reservoir previously imaged in the mantle wedge by geophysical methods. We show that the earthquake source moment tensor includes a major explosive component that we ascribe to carbon-rich melt/fluid migration along upper-mantle shear zones and rapid release of about 17,000 tons of carbon dioxide when ascending melts exit the carbonate stability field. Our results underline the importance of carbon-rich melts at active continental margins for emission budgets and suggest their potential episodic contributions to atmospheric carbon dioxide.


Author(s):  
Catur Cahyaningsih ◽  
Yos Admojo

This paper analyzes how resource of past and prospective great earthquake on the Central Sulawesi Arm, adhere on topography analysis from several space-based source. To answer the question, we analysis the tectonic geomorphic, stream pattern, exhumed fault, geological mapping and seismicity data. Detailed tectonic geomorphic studies in Sulawesi still lacking due to tectonic and fault obscures.  For instance, Palu Koro Fault (PKF) was unpredictable, because the historical seismic records inevitably remain poorly documented and unrecognized fault strand, which was buried beneath abundant Quaternary alluvium subsequently obscured the fault trace. In other hand, the faults have been active during Quaternary must take into account because potentially dangerous, also the inactive faults during instrumental period  must be re-evaluated in order to have awareness for large future large earthquake. Surprisingly, recent seismic activity of PKF generate super shear rupture a Mw 7.5 earthquake on 28th September 2018 with average slip 41 mm/year, which over the past two decade quiet from any seismic activity. The seismic potential for large fault is essential, since it has been silent during the instrumental period. Therefore, our motivation in this study to produce detail tectonic geomorphic map of the region in local scale, which is currently not available to prepare better knowledge and awareness for the large future earthquake. We have use Shuttle Radar Topography Mission (SRTM) with resolution ~30m, which run by ArcGIS software to observed tectonic geomorphic evidence of fault system and supplement with structural, geological and bathymetric data’s as ware available to us. We relate this analysis with seismicity data from Centroid Moment Tensor Solution (CMT) to recognize the seismic source. Our results show the tectonic geomorphic of Central Sulawesi Arm due to nature extension of NNW-SSE left-lateral slip curving to WNW-ESE of Palu-Koro Fault (PKF), then transcript to N-S circular normal fault of Poso Fault (PF). The PF indicate replica of PKF curving, where has not been mapped previously. We have mapped 60 major onshore fault systems, 10 faults showed evidence maximal to rapid rate tectonic activity along instrumental periods. Based on our CMT analysis, Sulawesi Island is greatly dominated by oblique fault.


Author(s):  
Nikolaos Triantafyllis ◽  
Ioannis E. Venetis ◽  
Ioannis Fountoulakis ◽  
Erion-Vasilis Pikoulis ◽  
Efthimios Sokos ◽  
...  

Abstract Automatic moment tensor (MT) determination is essential for real-time seismological applications. In this article, Gisola, a highly evolved software for MT determination, oriented toward high-performance computing, is presented. The program employs enhanced algorithms for waveform data selection via quality metrics, such as signal-to-noise ratio, waveform clipping, data and metadata inconsistency, long-period disturbances, and station evaluation based on power spectral density measurements in parallel execution. The inversion code, derived from ISOLated Asperities—an extensively used manual MT retrieval utility—has been improved by exploiting the performance efficiency of multiprocessing on the CPU and GPU. Gisola offers the ability for a 4D spatiotemporal adjustable MT grid search and multiple data resources interconnection to the International Federation of Digital Seismograph Networks Web Services (FDSNWS), the SeedLink protocol, and the SeisComP Data Structure standard. The new software publishes its results in various formats such as QuakeML and SC3ML, includes a website suite for MT solutions review, an e-mail notification system, and an integrated FDSNWS-event for MT solutions distribution. Moreover, it supports the ability to apply user-defined scripts, such as dispatching the MT solution to SeisComP. The operator has full control of all calculation aspects with an extensive and adjustable configuration. MT’s quality performance, for 531 manual MT solutions in Greece between 2012 and 2021, was measured and proved to be highly efficient.


2021 ◽  
Vol 11 (24) ◽  
pp. 12166
Author(s):  
Matteo Taroni ◽  
Jacopo Selva ◽  
Jiancang Zhuang

The use of the tapered Gutenberg-Richter distribution in earthquake source models is rapidly increasing, allowing overcoming the definition of a hard threshold for the maximum magnitude. Here, we expand the classical maximum likelihood estimation method for estimating the parameters of the tapered Gutenberg-Richter distribution, allowing the use of a variable through-time magnitude of completeness. Adopting a well-established technique based on asymptotic theory, we also estimate the uncertainties relative to the parameters. Differently from other estimation methods for catalogs with a variable completeness, available for example for the classical truncated Gutenberg-Richter distribution, our approach does not need the assumption on the distribution of the number of events (usually the Poisson distribution). We test the methodology checking the consistency of parameter estimations with synthetic catalogs generated with multiple completeness levels. Then, we analyze the Atlantic ridge seismicity, using the global centroid moment tensor catalog, finding that our method allows better constraining distribution parameters, allowing the use more data than estimations based on a single completeness level. This leads to a sharp decrease in the uncertainties associated with the parameter estimation, when compared with existing methods based on a single time-independent magnitude of completeness. This also allows analyzing subsets of events, to deepen data analysis. For example, separating normal and strike-slip events, we found that they have significantly different but well-constrained corner magnitudes. Instead, without distinguishing for focal mechanism and considering all the events in the catalog, we obtain an intermediate value that is relatively less constrained from data, with an open confidence region.


Author(s):  
D. Chebrov ◽  
V. Saltikov ◽  
E. Matveenko ◽  
S. Droznina ◽  
E. Romasheva ◽  
...  

The seismicity review of Kamchatka and surrounding territories for 2015 is given. In the Kamchatka earthquake catalogue, the minimum local magnitude of completeness is MLmin=3.5, and for earthquakes with h≥350 km under the Okhotsk sea MLmin=3.6. The Kamchatka earthquake catalogue for 2015 with ML3.5, published in the Appendix to this issue, includes 1213 events. 92 earthquakes of the catalogue with ML=3.0–6.5 were felt in Kamchatka and surrounding areas with seismic intensity I=2–6 according to the MSK-64 scale. For all events with ML5.0 that occurred in 2015 in the KB GS RAS area of responsibility, an attempt to calculate the seismic moment tensor (SMT) was made. There are 32 such events in the regional catalogue. For 28 earthquakes the SMT and depth h of the equivalent point source were calculated successfully. The calculations were performed for the SMT double-couple model using a nonlinear algorithm. In 2015, a typical location of the earthquake epicenters was observed in the Kamchatka zone. In 2015, the seismicity level in all selected zones and in the region as a whole correspond to the background one according to the “SESL’09” scale. The number of recorded events with ML3.5 and strong earthquakes with ML5.0 is close to the average annual value. Anomalous and significant events were not recorded.


Author(s):  
Ya. Radziminovich ◽  
V. Melnikova ◽  
N. Gileva ◽  
A. Filippova

The paper considers three relatively strong earthquakes that occurred in 2015 in the northern Lake Baikal region: July 7 Upper Akuli earthquake (Mw=4.6) with the epicenter at the headwaters of the Akuli River, and September 25 Gulonga-I (Mw=4.7) and December 13 Gulonga-II earthquakes (Mw=4.6) with the epicenters near the mountain lakes Gulonga. Instrumental and macroseismic data on these seismic events are reported. A seismic moment tensor, calculated from surface wave records, shows normal fault focal mechanisms for Upper Akuli and Gulonga-II earthquakes and strike-slip movements in the source of the Gulonga-I seismic event. The results obtained could be used in further studies of seismic zoning and seismic hazard assessment in the northern Lake Baikal region.


Author(s):  
V. Melnikova ◽  
N. Gileva ◽  
Ya. Radziminovich ◽  
A. Filippova

We consider September 2, 2015, Mw=5.1 Tallay earthquake occurred in the previously aseismic area of the North-Muya Ridge adjoining to the Muya-Kuanda basin from the north. Instrumental and macroseismic data on this seismic event are presented. Its seismic moment tensor is calculated from surface wave amplitude spectra. New data on strong ground motions are obtained within the north-eastern flank of the Baikal rift. The Tallay earthquake is found to be connected with seismogenic renewal of the second-order multidirectional faults activated in the rift stress field.


Sign in / Sign up

Export Citation Format

Share Document