finite rate of innovation
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Tao Chen ◽  
Lin Shi ◽  
Yongzhi Yu

Abstract Due to the rapid development and wide application of compressed sensing and sparse reconstruction theory, there exists a series of sparsity-based methods for the antenna sensor array direction of arrival (DOA) estimation with excellent performance. However, it is known that this kind of algorithms always suffers from the problem of grid mismatch. To overcome this shortcoming, a gridless DOA estimation algorithm with finite rate of innovation (FRI) based on a symmetric Toeplitz covariance matrix is proposed for uniform linear array (ULA) in this paper. In particular, a multiple measurement vector (MMV) FRI reconstruction model is built by exploiting the covariance data denoised according to covariance fitting criteria rather than the direct data or the original covariance data, which is commonly used in other representative gridless DOA estimation methods. Next, DOA can be retrieved from the recovered covariance matrix by utilizing an annihilating filter because each covariance data is a linear combination of complex exponentials. It guarantees to produce an exact spatial sparse estimate without discretization required by existing sparsity-based DOA estimation methods. Finally, the effectiveness and superiority of the proposed algorithm are demonstrated by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document