inadvertent peep
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Thomas Drevhammar ◽  
Markus Falk ◽  
Snorri Donaldsson ◽  
Mark Tracy ◽  
Murray Hinder

Background: Resuscitation of infants using T-piece resuscitators (TPR) allow positive pressure ventilation with positive end-expiratory pressure (PEEP). The adjustable PEEP valve adds resistance to expiration and could contribute to inadvertent PEEP. The study indirectly investigated risk of inadvertent peep by determining expiratory time constants. The aim was to measure system expiratory time constants for a TPR device in a passive mechanical model with infant lung properties.Methods: We used adiabatic bottles to generate four levels of compliance (0.5–3.4 mL/cm H2O). Expiratory time constants were recorded for combinations of fresh gas flow (8, 10, 15 L/min), PEEP (5, 8, 10 cm H2O), airway resistance (50, 200 cm H2O/L/sec and none), endotracheal tube (none, size 2.5, 3.0, 3.5) with a peak inflation pressure of 15 cm H2O above PEEP.Results: Low compliances resulted in time constants below 0.17 s contrasting to higher compliances where the expiratory time constants were 0.25–0.81 s. Time constants increased with increased resistance, lower fresh gas flows, higher set PEEP levels and with an added airway resistance or endotracheal tube.Conclusions: The risk of inadvertent PEEP increases with a shorter time for expiration in combination with a higher compliance or resistance. The TPR resistance can be reduced by increasing the fresh gas flow or reducing PEEP. The expiratory time constants indicate that this may be clinically important. The risk of inadvertent PEEP would be highest in intubated term infants with highly compliant lungs. These results are useful for interpreting clinical events and recordings.


2018 ◽  
Vol 104 (2) ◽  
pp. F122-F127 ◽  
Author(s):  
Murray Hinder ◽  
Alistair McEwan ◽  
Thomas Drevhammer ◽  
Snorri Donaldson ◽  
Mark Brian Tracy

BackgroundThe T-piece resuscitator (TPR) has seen increased use as a primary resuscitation device with newborns. Traditional TPR design uses a high resistance expiratory valve to produce positive end expiratory pressure (PEEP) or continuous positive airway pressure (CPAP) at resuscitation. A new TPR device that uses a dual flow ratio valve (fluidic flip) to produce PEEP/CPAP is now available (rPAP). We aimed to compare the measured ventilation performance of different TPR devices in a controlled bench test study.Design/methodsSingle operator provided positive pressure ventilation to an incremental testlung compliance (Crs) model (0.5–5 mL/cmH2O) with five different brands of TPR device (Atom, Neopuff, rPAP, GE Panda warmer and Draeger Resuscitaire). At recommended peak inflation pressure (PIP) 20 cmH2O, PEEP of 5 cmH2O and rate of 60 inflations per minute.Results1864 inflations were analysed. Four of the five devices tested demonstrated inadvertent elevations in mean PEEP (5.5–10.3 cmH2O, p<0.001) from set value as Crs was increased, while one device (rPAP) remained at the set value. Measured PIP exceeded the set value in two infant warmer devices (GE and Draeger) with inbuilt TPR at Crs of 0.5 (24.5 and 23.5 cmH2O, p<0.001). Significant differences were seen in tidal volumes across devices particularly at higher Crs (p<0.001).ConclusionsResults show important variation in delivered ventilation from set values due to inherent TPR device design characteristics with a range of lung compliances expected at birth. Device-generated inadvertent PEEP and overdelivery of PIP may be clinically deleterious for term and preterm newborns or infants with larger Crs during resuscitation.


1989 ◽  
Vol 6 (1) ◽  
pp. 31-35
Author(s):  
Felipe Gonzalez ◽  
Jeffrey Carlstrom ◽  
Peter Richardson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document