shi arrangement
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Duncan Levear

In 1986, Shi derived the famous formula $(n+1)^{n-1}$ for the number of regions of the Shi arrangement, a hyperplane arrangement in ${R}^n$. There are at least two different bijective explanations of this formula, one by Pak and Stanley, another by Athanasiadis and Linusson. In 1996, Athanasiadis used the finite field method to derive a formula for the number of $k$-dimensional faces of the Shi arrangement for any $k$. Until now, the formula of Athanasiadis did not have a bijective explanation. In this paper, we extend a bijection for regions defined by Bernardi to obtain a bijection between the $k$-dimensional faces of the Shi arrangement for any $k$ and a set of decorated binary trees. Furthermore, we show how these trees can be converted to a simple set of functions of the form $f: [n-1] \to [n+1]$ together with a marked subset of $\text{Im}(f)$. This correspondence gives the first bijective proof of the formula of Athanasiadis. In the process, we also obtain a bijection and counting formula for the faces of the Catalan arrangement. All of our results generalize to both extended arrangements.


2019 ◽  
Vol 109 ◽  
pp. 55-64
Author(s):  
Richard Ehrenborg
Keyword(s):  

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Takuro Abe ◽  
Daisuke Suyama ◽  
Shuhei Tsujie

International audience The Ish arrangement was introduced by Armstrong to give a new interpretation of the $q; t$-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we give a necessary and sufficient condition for the deleted Ish arrangement to be free L’arrangement Ish a été introduit par Armstrong pour donner une nouvelle interprétation des nombres $q; t$-Catalan de Garsia et Haiman. Armstrong et Rhoades ont montré qu’il y avait des ressemblances frappantes entre l’arrangement Shi et l’arrangement Ish et ont posé des conjectures. L’une d’elles est de savoir si l’arrangement Ish est un arrangement libre ou pas. Dans cet article, nous vérifions que l’arrangement Ish est supersoluble et donc libre. De plus, on donne une condition nécessaire et suffisante pour que l’arrangement Ish réduit soit libre.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Robin Sulzgruber ◽  
Marko Thiel

International audience We introduce type $C$ parking functions, encoded as vertically labelled lattice paths and endowed with a statistic dinv'. We define a bijection from type $C$ parking functions to regions of the Shi arrangement of type $C$, encoded as diagonally labelled ballot paths and endowed with a natural statistic area'. This bijection is a natural analogue of the zeta map of Haglund and Loehr and maps dinv' to area'. We give three different descriptions of it. Nous introduisons les fonctions de stationnement de type $C$, encodées par des chemins étiquetés verticalement et munies d’une statistique dinv'. Nous définissons une bijection entre les fonctions de stationnement de type $C$ et les régions de l’arrangement de Shi de type $C$, encodées par des chemins étiquetés diagonalement et munies d’une statistique naturelle area'. Cette bijection est un analogue naturel à la fonction zeta de Haglund et Loehr, et envoie dinv' sur area'. Nous donnons trois différentes descriptions de celle-ci.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Myrto Kallipoliti ◽  
Eleni Tzanaki

International audience In the present paper, the relation between the dominant regions in the $m$-Shi arrangement of types $B_n/C_n$, and those of the $m$-Shi arrangement of type $A_{n-1}$ is investigated. More precisely, it is shown explicitly how the sets $R^m(B_n)$ and $R^m(C_n)$, of dominant regions of the $m$-Shi arrangement of types $B_n$ and $C_n$ respectively, can be projected to the set $R^m(A_{n-1})$ of dominant regions of the $m$-Shi arrangement of type $A_{n-1}$. This is done by using two different viewpoints for the representative alcoves of these regions: the Shi tableaux and the abacus diagrams. Moreover, bijections between the sets $R^m(B_n)$, $R^m(C_n)$, and lattice paths inside a rectangle $n\times{mn}$ are provided. Dans cet article, nous étudions la relation entre les régions dominantes du $m$-arrangement de Shi de types $B_n/C_n$ et ceux du $m$-arrangement de Shi de type $A_{n-1}$. Plus précisément, nous montrons comment les ensembles $R^m(B_n)$ et $R^m(C_n)$, des régions dominantes du $m$ -arrangement de Shi de types $B_n$ et $C_n$ respectivement, peuvent être projetés sur l’ensemble $R^m(A_{n-1})$ des régions dominantes du $m$-arrangement de Shi de types $A_{n-1}$. Pour cela nous utilisons deux points de vue différents sur les alcôves représentatives de ces régions: les tableaux de Shi et les diagrammes d’abaques. De plus, nous fournissons des bijections entre les ensembles $R^m(B_n)$, $R^m(C_n)$, et les chemins à l’intérieur d’un rectangle $n\times{mn}$.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Sam Hopkins ◽  
David Perkinson

International audience We define the bigraphical arrangement of a graph and show that the Pak-Stanley labels of its regions are the parking functions of a closely related graph, thus proving conjectures of Duval, Klivans, and Martin and of Hopkins and Perkinson. A consequence is a new proof of a bijection between labeled graphs and regions of the Shi arrangement first given by Stanley. We also give bounds on the number of regions of a bigraphical arrangement. The full version of this paper is forthcoming in the $\textit{Transactions of the American Mathematical Society}$


2013 ◽  
Vol 120 (8) ◽  
pp. 2118-2136 ◽  
Author(s):  
Chao-Ping Dong
Keyword(s):  

10.37236/3272 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Karola Mészáros

The number of regions of the type $C_n$ Shi arrangement in $\mathbb{R}^n$ is $(2n+1)^n$. Strikingly, no bijective proof of this fact has been given thus far. The aim of this paper is to provide such a bijection and use it to prove more refined results. We construct a bijection between the regions of the type $C_n$ Shi arrangement in $\mathbb{R}^n$ and sequences $a_1a_2 \ldots a_n$, where $a_i \in \{-n, -n+1, \ldots, -1, 0, 1, \ldots, n-1, n\}$, $ i \in [n]$. Our bijection naturally restrict to bijections between special regions of the arrangement and sequences with a given number of distinct elements.


Sign in / Sign up

Export Citation Format

Share Document