bell functions
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 11 (11) ◽  
pp. 4831
Author(s):  
Marco Furlan Tassara ◽  
Kyriakos Grigoriadis ◽  
Georgios Mavros

Up-to-date predictive rubber friction models require viscoelastic modulus information; thus, the accurate representation of storage and loss modulus components is fundamental. This study presents two separate empirical formulations for the complex moduli of viscoelastic materials such as rubber. The majority of complex modulus models found in the literature are based on tabulated dynamic testing data. A wide range of experimentally obtained rubber moduli are used in this study, such as SBR (styrene-butadiene rubber), reinforced SBR with filler particles and typical passenger car tyre rubber. The proposed formulations offer significantly faster computation times compared to tabulated/interpolated data and an accurate reconstruction of the viscoelastic frequency response. They also link the model coefficients with critical sections of the data, such as the gradient of the slope in the storage modulus, or the peak values in loss tangent and loss modulus. One of the models is based on piecewise polynomial fitting and offers versatility by increasing the number of polynomial functions used to achieve better fitting, but with additional pre-processing time. The other model uses a pair of logistic-bell functions and provides a robust fitting capability and the fastest identification, as it requires a reduced number of parameters. Both models offer good correlations with measured data, and their computational efficiency was demonstrated via implementation in Persson’s friction model.



2018 ◽  
Vol 11 (04) ◽  
pp. 500-515
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Jongkyum Kwon


2017 ◽  
Vol 10 (07) ◽  
pp. 3851-3855
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Gwan-Woo Jang ◽  
Jongkyum Kwon


Sign in / Sign up

Export Citation Format

Share Document