mordell conjecture
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Hideaki Ikoma ◽  
Shu Kawaguchi ◽  
Atsushi Moriwaki

The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell–Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.


Author(s):  
J. S. Balakrishnan ◽  
A. J. Best ◽  
F. Bianchi ◽  
B. Lawrence ◽  
J. S. Müller ◽  
...  
Keyword(s):  

Author(s):  
Vesselin Dimitrov ◽  
Ziyang Gao ◽  
Philipp Habegger

Abstract Consider a one-parameter family of smooth, irreducible, projective curves of genus $g\ge 2$ defined over a number field. Each fiber contains at most finitely many rational points by the Mordell conjecture, a theorem of Faltings. We show that the number of rational points is bounded only in terms of the family and the Mordell–Weil rank of the fiber’s Jacobian. Our proof uses Vojta’s approach to the Mordell Conjecture furnished with a height inequality due to the 2nd- and 3rd-named authors. In addition we obtain uniform bounds for the number of torsion points in the Jacobian that lie in each fiber of the family.


2019 ◽  
Vol 155 (6) ◽  
pp. 1057-1075 ◽  
Author(s):  
Jennifer S. Balakrishnan ◽  
Netan Dogra

The Chabauty–Kim method allows one to find rational points on curves under certain technical conditions, generalising Chabauty’s proof of the Mordell conjecture for curves with Mordell–Weil rank less than their genus. We show how the Chabauty–Kim method, when these technical conditions are satisfied in depth 2, may be applied to bound the number of rational points on a curve of higher rank. This provides a non-abelian generalisation of Coleman’s effective Chabauty theorem.


2019 ◽  
Vol 7 ◽  
Author(s):  
SARA CHECCOLI ◽  
FRANCESCO VENEZIANO ◽  
EVELINA VIADA

In this article we prove the explicit Mordell Conjecture for large families of curves. In addition, we introduce a method, of easy application, to compute all rational points on curves of quite general shape and increasing genus. The method bases on some explicit and sharp estimates for the height of such rational points, and the bounds are small enough to successfully implement a computer search. As an evidence of the simplicity of its application, we present a variety of explicit examples and explain how to produce many others. In the appendix our method is compared in detail to the classical method of Manin–Demjanenko and the analysis of our explicit examples is carried to conclusion.


2018 ◽  
Vol 70 (5) ◽  
pp. 1173-1200 ◽  
Author(s):  
Evelina Viada

AbstractLet be a curve of genus at least 2 embedded in E1 × … × EN, where the Ei are elliptic curves for i = 1, . . . , N. In this article we give an explicit sharp bound for the Néron–Tate height of the points of contained in the union of all algebraic subgroups of dimension < max(), where is the minimal dimension of a translate (resp. of a torsion variety) containing .As a corollary, we give an explicit bound for the height of the rational points of special curves, proving new cases of the explicit Mordell Conjecture and in particular making explicit (and slightly more general in the CM case) the Manin–Dem’janenko method for curves in products of elliptic curves.


Sign in / Sign up

Export Citation Format

Share Document