independence of random variables
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Jialu Bao ◽  
Marco Gaboardi ◽  
Justin Hsu ◽  
Joseph Tassarotti

Formal reasoning about hashing-based probabilistic data structures often requires reasoning about random variables where when one variable gets larger (such as the number of elements hashed into one bucket), the others tend to be smaller (like the number of elements hashed into the other buckets). This is an example of negative dependence , a generalization of probabilistic independence that has recently found interesting applications in algorithm design and machine learning. Despite the usefulness of negative dependence for the analyses of probabilistic data structures, existing verification methods cannot establish this property for randomized programs. To fill this gap, we design LINA, a probabilistic separation logic for reasoning about negative dependence. Following recent works on probabilistic separation logic using separating conjunction to reason about the probabilistic independence of random variables, we use separating conjunction to reason about negative dependence. Our assertion logic features two separating conjunctions, one for independence and one for negative dependence. We generalize the logic of bunched implications (BI) to support multiple separating conjunctions, and provide a sound and complete proof system. Notably, the semantics for separating conjunction relies on a non-deterministic , rather than partial, operation for combining resources. By drawing on closure properties for negative dependence, our program logic supports a Frame-like rule for negative dependence and monotone operations. We demonstrate how LINA can verify probabilistic properties of hash-based data structures and balls-into-bins processes.


2019 ◽  
Vol 373 (1) ◽  
pp. 435-456
Author(s):  
Kaifeng Bu ◽  
Arthur Jaffe ◽  
Zhengwei Liu ◽  
Jinsong Wu

Abstract The classical de Finetti theorem in probability theory relates symmetry under the permutation group with the independence of random variables. This result has application in quantum information. Here we study states that are invariant with respect to a natural action of the braid group, and we emphasize the pictorial formulation and interpretation of our results. We prove a new type of de Finetti theorem for the four-string, double-braid group acting on the parafermion algebra to braid qudits, a natural symmetry in the quon language for quantum information. We prove that a braid-invariant state is extremal if and only if it is a product state. Furthermore, we provide an explicit characterization of braid-invariant states on the parafermion algebra, including finding a distinction that depends on whether the order of the parafermion algebra is square free. We characterize the extremal nature of product states (an inverse de Finetti theorem).


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 157 ◽  
Author(s):  
Andrei Khrennikov ◽  
Alexander Alodjants

We start with a review on classical probability representations of quantum states and observables. We show that the correlations of the observables involved in the Bohm–Bell type experiments can be expressed as correlations of classical random variables. The main part of the paper is devoted to the conditional probability model with conditioning on the selection of the pairs of experimental settings. From the viewpoint of quantum foundations, this is a local contextual hidden-variables model. Following the recent works of Dzhafarov and collaborators, we apply our conditional probability approach to characterize (no-)signaling. Consideration of the Bohm–Bell experimental scheme in the presence of signaling is important for applications outside quantum mechanics, e.g., in psychology and social science. The main message of this paper (rooted to Ballentine) is that quantum probabilities and more generally probabilities related to the Bohm–Bell type experiments (not only in physics, but also in psychology, sociology, game theory, economics, and finances) can be classically represented as conditional probabilities.


2018 ◽  
Vol 12 (23) ◽  
pp. 1121-1127
Author(s):  
Jian Wang ◽  
Qiuli Dong

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Jing Chen

With a new notion of independence of random variables, we establish the nonadditive version of weak law of large numbers (LLN) for the independent and identically distributed (IID) random variables under Choquet expectations induced by 2-alternating capacities. Moreover, we weaken the moment assumptions to the first absolute moment and characterize the approximate distributions of random variables as well. Naturally, our theorem can be viewed as an extension of the classical LLN to the case where the probability is no longer additive.


Author(s):  
HENG CHEN ◽  
JITAO WU

Tests to determine the dependence or independence of random variables X and Y are well established. Recently, criteria based on reproducing kernel Hilbert spaces has received much attentions. They are developed in the setting of norm of Hilbert spaces. In this paper we propose tests in the setting of constraints of coefficients of functions. Some estimates of tests are constructed. In particular the error between the test of constrained covariance and the estimate is bounded.


2011 ◽  
Vol 48 (2) ◽  
pp. 514-526 ◽  
Author(s):  
Adam Jakubowski ◽  
Joanna Karłowska-Pik

This paper is motivated by relations between association and independence of random variables. It is well known that, for real random variables, independence implies association in the sense of Esary, Proschan and Walkup (1967), while, for random vectors, this simple relationship breaks. We modify the notion of association in such a way that any vector-valued process with independent increments also has associated increments in the new sense - association between blocks. The new notion is quite natural and admits nice characterization for some classes of processes. In particular, using the covariance interpolation formula due to Houdré, Pérez-Abreu and Surgailis (1998), we show that within the class of multidimensional Gaussian processes, block association of increments is equivalent to supermodularity (in time) of the covariance functions. We also define corresponding versions of weak association, positive association, and negative association. It turns out that the central limit theorem for weakly associated random vectors due to Burton, Dabrowski and Dehling (1986) remains valid, if the weak association is relaxed to the weak association between blocks.


Sign in / Sign up

Export Citation Format

Share Document