inflow problem
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Elizabeth Brasseale ◽  
Parker MacCready

AbstractThe inflow to an estuary originates on the shelf. It flushes the estuary and can bring in nutrients, heat, salt, and hypoxic water, having consequences for estuarine ecosystems and fjordic glacial melt. However, the source of estuarine inflow has only been explored in simple models that do not resolve interactions between inflow and outflow outside of the estuarine channel. This study addressed the estuary inflow problem using variations on a three-dimensional primitive equation model of an idealized estuarine channel next to a sloping, unstratified shelf with mixing provided by a single frequency, 12-hour tide. Inflow was identified using particle tracking, momentum budgets, and Total Exchange Flow. Inflow sources were found in shelf water downstream of the estuary, river plume water, and shelf water upstream of the estuary. Downstream is defined here with respect to the direction of coastal trapped wave propagation, which is to the right for an observer looking seaward from the estuary mouth in the northern hemisphere. Downstream of the estuary and offshore of the plume, the dynamics were quasi-geostrophic, consistent with previous simple models. The effect of this inflowing current on the geometry of the river plume front was found to be small. Novel sources of inflow were identified which originated from within the plume and upstream of the estuary.


Author(s):  
J. J. Joosten ◽  
M. A. Reijntjes ◽  
M. D. Slooter ◽  
M. Duijvestein ◽  
C. J. Buskens ◽  
...  

AbstractThe two most essential technical aspects of any gastrointestinal anastomosis are adequate perfusion and sufficient reach. For ileal pouch-anal anastomosis (IPAA), a trade-off exists between these two factors, as lengthening manoeuvers to avoid tension may require vascular ligation. In this technical note, we describe two cases in which we used indocyanine green (ICG) fluorescence angiography (FA) to assess perfusion of the pouch after vascular ligation to acquire sufficient reach. In both cases, FA allowed us to distinguish better between an arterial inflow problem and venous congestion than white light assessment. Both pouches remained viable and no anastomotic leakage occurred. Our results indicate that ICG FA is of great value after vascular ligation to obtain reach during IPAA.


2021 ◽  
Author(s):  
Mohammad Soroush ◽  
Mahdi Mahmoudi ◽  
Morteza Roostaei ◽  
Hossein Izadi ◽  
Seyed Abolhassan Hosseini ◽  
...  

Abstract In wake of the biggest oil crash in history triggered by the COVID-19 pandemic; Western Canada in- situ production is under tremendous price pressure. Therefore, the operators may consider shut in the wells. Current investigation offers an insight into the effect of near-wellbore skin buildup because of such shut-in. A series of simulation studies was performed to quantitatively address the impact of well shut-in on the long-term performance of well, in particular on key performance indicators of the well including cumulative steam to oil ratio and cumulative oil production. The long-term shut-in contributes to three main modes of plugging: (1) near-wellbore pore plugging by clays and fines, (2) scaling, and (3) chemical consolidation induced by corrosion. A series of carefully designed simulations was also utilized to understand the potential of skin buildup in the near-wellbore region and within different sand control devices. The simulation results showed a higher sensitivity of well performance to shut-in for the wells in the initial stage of SAGD production. If the well is shut in during the first years, the total reduction in cumulative oil production is much higher compared to a well which is shut-in during late SAGD production life. As the induced skin due to shut-in increases, the ultimate cumulative oil production drops whose magnitude depends on well completion designs. The highest effect on the cumulative oil production is in the case of completion designs with flow control devices (liner deployed and tubing deployed completions). Therefore, wellbore hydraulics and completion design play key roles in the maintenance of uniform inflow profile, and the skin buildup due to shut-in poses a high risk of inflow problem and increases the risk of hot-spot development and steam breakthrough. This investigation offers a new understanding concerning the effect of shut-in and wellbore skin buildup on SAGD operation. It helps production and completion engineers to better understand and select candidate wells for shut-in and subsequently to minimize the skin buildup in wells.


Sign in / Sign up

Export Citation Format

Share Document