constructive approximation
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Willi Freeden

<p>The lecture highlights arguments that, coming from multiscale mathematics, have fostered the advancement of gravimetry, as well as those that, generated by gravimetric problems, have contributed to the enhancement in constructive approximation and numerics. Inverse problems in gravimetry are delt with multiscale mollifier decorrelation strategies. Two examples are studied in more detail: (i) Vening Meinesz multiscale surface mollifier regularization to determine locally the Earth's disturbing potential from deflections of vertical, (ii) Newton multiscale volume mollifier regularization of the inverse gravimetry problem to derive locally the density contrast distribution from functionals of the Newton integral and to detect fine particulars of geological relevance. All in all, the Vening Meinesz medal  lecture is meant as an  \lq \lq appetizer'' served to enjoy the tasty meal "Mathematical Geoscience Today'' to be shared by geoscientists and mathematicians in the field of gravimetry. It provides innovative concepts and locally relevant applications presented in a monograph to be published by Birkhäuser in the book series “Geosystems Mathematics” (2021).</p>


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950090
Author(s):  
S. VERMA ◽  
P. VISWANATHAN

One of the tools offered by fractal geometry is fractal interpolation, which forms a basis for the constructive approximation theory for nondifferentiable functions. The notion of fractal interpolation function can be used to obtain a wide spectrum of self-referential functions associated to a prescribed continuous function on a compact interval in [Formula: see text]. These fractal maps, the so-called [Formula: see text]-fractal functions, are defined by means of suitable iterated function system which involves some parameters. Building on the literature related to the notion of [Formula: see text]-fractal functions, the current study targets to record the continuous dependence of the [Formula: see text]-fractal function on parameters involved in its definition. Furthermore, the paper attempts to study the box dimension of the graph of the [Formula: see text]-fractal function.


2019 ◽  
Vol 36 (6) ◽  
pp. 5899-5907
Author(s):  
Juan J. Font ◽  
Delia Sanchis ◽  
Manuel Sanchis

Author(s):  
Vijay Gupta ◽  
Themistocles M. Rassias ◽  
P. N. Agrawal ◽  
Ana Maria Acu

2016 ◽  
Vol 28 (7) ◽  
pp. 1289-1304 ◽  
Author(s):  
Namig J. Guliyev ◽  
Vugar E. Ismailov

The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this note, we consider constructive approximation on any finite interval of [Formula: see text] by neural networks with only one neuron in the hidden layer. We construct algorithmically a smooth, sigmoidal, almost monotone activation function [Formula: see text] providing approximation to an arbitrary continuous function within any degree of accuracy. This algorithm is implemented in a computer program, which computes the value of [Formula: see text] at any reasonable point of the real axis.


Sign in / Sign up

Export Citation Format

Share Document