pixel substitution
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 34 (07) ◽  
pp. 11807-11814
Author(s):  
Jinshan Pan ◽  
Yang Liu ◽  
Deqing Sun ◽  
Jimmy Ren ◽  
Ming-Ming Cheng ◽  
...  

We present a simple and effective image super-resolution algorithm that imposes an image formation constraint on the deep neural networks via pixel substitution. The proposed algorithm first uses a deep neural network to estimate intermediate high-resolution images, blurs the intermediate images using known blur kernels, and then substitutes values of the pixels at the un-decimated positions with those of the corresponding pixels from the low-resolution images. The output of the pixel substitution process strictly satisfies the image formation model and is further refined by the same deep neural network in a cascaded manner. The proposed framework is trained in an end-to-end fashion and can work with existing feed-forward deep neural networks for super-resolution and converges fast in practice. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods.


2009 ◽  
Vol 2009 ◽  
pp. 1-22 ◽  
Author(s):  
Shahram Etemadi Borujeni ◽  
Mohammad Eshghi

In this paper, we have presented a new permutation-substitution image encryption architecture using chaotic maps and Tompkins-Paige algorithm. The proposed encryption system includes two major parts, chaotic pixels permutation and chaotic pixels substitution. A logistic map is used to generate a bit sequence, which is used to generate pseudorandom numbers in Tompkins-Paige algorithm, in 2D permutation phase. Pixel substitution phase includes two process, the tent pseudorandom image (TPRI) generator and modulo addition operation. All parts of the proposed chaotic encryption system are simulated. Uniformity of the histogram of the proposed encrypted image is justified using the chi-square test, which is less than (255, 0.05). The vertical, horizontal, and diagonal correlation coefficients, as well as their average and RMS values for the proposed encrypted image are calculated that is about 13% less than previous researches. To quantify the difference between the encrypted image and the corresponding plain-image, three measures are used. These are MAE, NPCR, and UACI, which are improved in our proposed system considerably. NPCR of our proposed system is exactly the ideal value of this criterion. The key space of our proposed method is large enough to protect the system against any Brute-force and statistical attacks.


Sign in / Sign up

Export Citation Format

Share Document