phase encoding
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 114)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Yujiao Zhao ◽  
Zheyuan Yi ◽  
Yilong Liu ◽  
Fei Chen ◽  
Linfang Xiao ◽  
...  

2021 ◽  
Author(s):  
Anna I Blazejewska ◽  
Thomas Witzel ◽  
Jesper LR Andersson ◽  
Lawrence L Wlad ◽  
Jonathan R Polimeni

Accurate spatial alignment of MRI data acquired across multiple contrasts in the same subject is often crucial for data analysis and interpretation, but can be challenging in the presence of geometric distortions that differ between acquisitions. It is well known that single-shot echo-planar imaging (EPI) acquisitions suffer from distortion in the phase-encoding direction due to B0 field inhomogeneities arising from tissue magnetic susceptibility differences and other sources, however there can be distortion in other encoding directions as well in the presence of strong field homogeneities. High-resolution ultrahigh-field MRI typically uses low bandwidth in the slice-encoding direction to acquire thin slices and, when combined with the pronounced B0 inhomogeneities, is prone to an additional geometric distortion in the slice direction as well. Here we demonstrate a presence of this slice distortion in high-resolution 7T EPI acquired with a novel pulse sequence allowing for the reversal of the slice-encoding gradient polarity that enables the acquisition of pairs of images with equal magnitudes of distortion in the slice direction but with opposing polarities. We also show that the slice-direction distortion can be corrected using gradient reversal-based method applying the same software used for conventional corrections of phase-encoding direction distortion.


Geophysics ◽  
2021 ◽  
pp. 1-42
Author(s):  
Yike Liu ◽  
Yanbao Zhang ◽  
Yingcai Zheng

Multiples follow long paths and carry more information on the subsurface than primary reflections, making them particularly useful for imaging. However, seismic migration using multiples can generate crosstalk artifacts in the resulting images because multiples of different orders interfere with each others, and crosstalk artifacts greatly degrade the quality of an image. We propose to form a supergather by applying phase-encoding functions to image multiples and stacking several encoded controlled-order multiples. The multiples are separated into different orders using multiple decomposition strategies. The method is referred to as the phase-encoded migration of all-order multiples (PEM). The new migration can be performed by applying only two finite-difference solutions to the wave equation. The solutions include backward-extrapolating the blended virtual receiver data and forward-propagating the summed virtual source data. The proposed approach can significantly attenuate crosstalk artifacts and also significantly reduce computational costs. Numerical examples demonstrate that the PEM can remove relatively strong crosstalk artifacts generated by multiples and is a promising approach for imaging subsurface targets.


2021 ◽  
Author(s):  
Xiao Li ◽  
Liang-Liang Wang ◽  
Jia-shun Zhang ◽  
Wei Chen ◽  
Yue Wang ◽  
...  

Abstract A quantum key distribution transmitter chip based on hybrid‐integration of silica planar light‐wave circuit (PLC) and lithium niobates (LN) modulator PLC is presented. The silica part consists of a tunable directional coupler and 400 ps delay line, and the LN part is made up of a Y‐branch, with electro‐optic modulators on both arms. The two parts are facet‐coupled to form an asymmetric Mach‐Zehnder interferometer. We have successfully encoded and decoded four BB84 states at 156.25 MHz repetition rate. Fast phase‐encoding of 0 or π has been achieved, with interference fringe visibilities 78.53% and 82.68% for state |+> and |‐>, respectively. With the aid of an extra off‐chip LN intensity modulator, two time‐bin states have been prepared and the extinction ratios are 18.65 dB and 15.46 dB for state |0> and |1>, respectively.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Siyu Han ◽  
Yutao Huang ◽  
Shang Mi ◽  
Xiaojuan Qin ◽  
Jindong Wang ◽  
...  

AbstractSemi-quantum key distribution (SQKD) is used to establish a string of shared secret keys between a quantum party and a classical party. Here, we report the first proof-of-principle experimental demonstration of SQKD based on the Mirror protocol, which is the most experimentally feasible SQKD protocol, and equipped with time-phase encoding scheme employing the method of selective modulation. The experiment was performed at a repetition frequency of 62.5 MHz and a high raw key rate arrived at 69.8 kbps, and the average quantum bit error rate was found to be 4.56% and 2.78% for the “SWAP-x-Z” ($\mathrm{x}\in \{01,10\}$ x ∈ { 01 , 10 } ) and the “CTRL-X”, respectively. The results demonstrate the feasibility of our system, and this study is helpful for future research on SQKD experiments.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7915
Author(s):  
Zhiting Fei ◽  
Jiachen Zhao ◽  
Zhe Geng ◽  
Xiaohua Zhu ◽  
Jindong Zhang

In this paper, a new radar signal modulated with a hybrid of the frequency shift keying (FSK) and the phase shift keying (PSK) signal—i.e., the FSK-PSK signal—is studied. Different phase encoding sequences are used to modulate the sub-pulses to obtain lower sidelobe levels and ensure signal orthogonality. In addition, to counter intra-pulse slice repeater jamming of specific length generated by the enemy jammer, an orthogonal waveform made of sub-pulses of equal length based on the FSK-PSK modulation scheme is designed. The simulation results show that the optimized discrete phase encoding sequence can significantly enhance the orthogonality of the sub-pulse in the FSK-PSK signal and effectively suppress the slice repeater jamming. Two algorithms are proposed: (1) the low sidelobe waveform optimization algorithm based on ADMM (LSW-ADMM); and (2) the anti-slice-repeater-jamming algorithm based on ADMM (ASRJ-ADMM). Both algorithms exhibit fast convergence speed and low computational complexity.


Sign in / Sign up

Export Citation Format

Share Document