intraocular lens calculation
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 28)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Taimí Cárdenas-Díaz ◽  
M. Teresa González-Hernández ◽  
Michel Guerra-Almaguer

2021 ◽  
Vol 14 (8) ◽  
pp. 1174-1178
Author(s):  
Harrish Nithianandan ◽  
◽  
Eric S. Tam ◽  
Hannah Chiu ◽  
Rajiv Maini ◽  
...  

AIM: To determine the refractive accuracy of the Haigis, Barrett Universal II (Barrett), and Hill-radial basis function 2.0 (Hill-RBF) intraocular lens (IOL) power calculations formulas in eyes undergoing manual cataract surgery (MCS) and refractive femtosecond laser-assisted cataract surgery (ReLACS). METHODS: This was a REB-approved, retrospective interventional comparative case series of 158 eyes of 158 patients who had preoperative biometry completed using the IOL Master 700 and underwent implantation of a Tecnis IOL following uncomplicated cataract surgery using either MCS or ReLACS. Target spherical equivalence (SE) was predicted using the Haigis, Barrett, and Hill-RBF formulas. An older generation formula (Hoffer Q) was included in the analysis. Mean refractive error (ME) was calculated one month postoperatively. The lens factors of all formulas were retrospectively optimized to set the ME to 0 for each formula across all eyes. The median absolute errors (MedAE) and the proportion of eyes achieving an absolute error (AE) within 0.5 diopters (D) were compared between the two formulas among MCS and ReLACS eyes, respectively. RESULTS: Of the 158 eyes studied, 64 eyes underwent MCS and 94 eyes underwent ReLACS. Among MCS eyes, the MedAE did not differ between the formulas (P=0.59), however among ReLACS eyes, Barrett and Hill-RBF were more accurate (P=0.001). Barrett and Hill-RBF were both more likely to yield AE<0.5 D among both groups (P<0.001). CONCLUSION: The Barrett and Hill-RBF formula lead to greater refractive accuracy and likelihood of refractive success when compare to Haigis in eyes undergoing ReLACS.


2021 ◽  
Author(s):  
Shengjie Yin ◽  
Chengyao Guo ◽  
Kunliang Qiu ◽  
Tsz Kin Ng ◽  
Yuancun Li ◽  
...  

Abstract Purpose: Hyperopic surprises tend to occur in axial myopic eyes and other factors including corneal curvature have rarely been analyzed in cataract surgery, especially in eyes with long axial length (≥ 26.0 mm). Thus, the purpose of our study was to evaluate the influence of keratometry on four different formulas (SRK/T, Barrett Universal II, Haigis and Olsen) in intraocular lens (IOL) power calculation for long eyes.Methods: Retrospective case-series. 180 eyes with axial length (AL) ≥ 26.0 mm were divided into 3 keratometry (K) groups: K ≤ 42.0 D (Flat), K ≥ 46.0 D (Steep), 42.0 < K < 46.0 D (Average). Prediction errors (PE) were compared between different formulas. Multiple regression analysis was performed to investigate factors associated with the PE.Results: The mean absolute error was higher for all evaluated formulas in Steep group (ranging from 0.66 D to 1.02 D) than the Flat (0.34 D to 0.67 D) and Average groups (0.40 D to 0.74D). The median absolute errors predicted by Olsen formula were significantly lower than that predicted by Haigis formula (0.42 D versus 0.85 D in Steep and 0.29 D versus 0.69 D in Average) in Steep and Average groups (P = 0.012, P < 0.001, respectively). And the Olsen formula demonstrated equal accuracy to the Barrett II formula in Flat and Average groups. The predictability of the SRK/T formula was affected by the AL and K, while the predictability of Olsen and Haigis formulas was affected by the AL only. Conclusions: Steep cornea has more influence on the accuracy of IOL power calculation than the other corneal shape in long eyes. Overall, both the Olsen and Barrett Universal II formulas are recommended in long eyes with unusual keratometry.


2021 ◽  
Vol 9 (4) ◽  
pp. 324-324
Author(s):  
Zhouyue Li ◽  
Zhangkai Lian ◽  
Charlotte Aimee Young ◽  
Jing Zhao ◽  
Guangming Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document