Explorations and Expectations of Equidistribution Adaptations for Nonlinear Quenching Problems

2013 ◽  
Vol 5 (04) ◽  
pp. 407-422 ◽  
Author(s):  
Matthew A. Beauregard ◽  
Qin Sheng

AbstractFinite difference computations that involve spatial adaptation commonly employ an equidistribution principle. In these cases, a new mesh is constructed such that a given monitor function is equidistributed in some sense. Typical choices of the monitor function involve the solution or one of its many derivatives. This straightforward concept has proven to be extremely effective and practical. However, selections of core monitoring functions are often challenging and crucial to the computational success. This paper concerns six different designs of the monitoring function that targets a highly nonlinear partial differential equation that exhibits both quenching-type and degeneracy singularities. While the first four monitoring strategies are within the so-calledprimitiveregime, the rest belong to a later category of themodifiedtype, which requires the priori knowledge of certain important quenching solution characteristics. Simulated examples are given to illustrate our study and conclusions.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
I. Rusagara ◽  
C. Harley

The temperature profile for fins with temperature-dependent thermal conductivity and heat transfer coefficients will be considered. Assuming such forms for these coefficients leads to a highly nonlinear partial differential equation (PDE) which cannot easily be solved analytically. We establish a numerical balance rule which can assist in getting a well-balanced numerical scheme. When coupled with the zero-flux condition, this scheme can be used to solve this nonlinear partial differential equation (PDE) modelling the temperature distribution in a one-dimensional longitudinal triangular fin without requiring any additional assumptions or simplifications of the fin profile.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Somayeh Pourghanbar ◽  
Jalil Manafian ◽  
Mojtaba Ranjbar ◽  
Aynura Aliyeva ◽  
Yusif S. Gasimov

In this paper, the Saul’yev finite difference scheme for a fully nonlinear partial differential equation with initial and boundary conditions is analyzed. The main advantage of this scheme is that it is unconditionally stable and explicit. Consistency and monotonicity of the scheme are discussed. Several finite difference schemes are used to compare the Saul’yev scheme with them. Numerical illustrations are given to demonstrate the efficiency and robustness of the scheme. In each case, it is found that the elapsed time for the Saul’yev scheme is shortest, and the solution by the Saul’yev scheme is nearest to the Crank–Nicolson method.


Author(s):  
Ram Dayal Pankaj ◽  
Arun Kumar ◽  
Chandrawati Sindhi

The Ritz variational method has been applied to the nonlinear partial differential equation to construct a model for travelling wave solution. The spatially periodic trial function was chosen in the form of combination of Jacobian Elliptic functions, with the dependence of its parameters


Sign in / Sign up

Export Citation Format

Share Document