superconducting levitation
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 0)

2020 ◽  
Vol 64 (1-4) ◽  
pp. 221-227
Author(s):  
Xianfeng Zhao ◽  
Zhiqi Zhou ◽  
Yuan Liu ◽  
Luquan Yang

Magnetic stiffness is one of the important stability parameters of high temperature superconducting levitation systems. Till to now, great efforts have been made to understand levitation properties including flux penetration, magnetization curves, levitation force, ac susceptibilities, etc. In this paper we present a quadratic approximation method for the limit of magnetic stiffness in a high temperature superconducting levitation system based on Kim’s critical state model and Ampère law. The system is composed with a cylindrical permanent magnet (PM) and a coaxial high temperature superconductor (HTS). It is found that the limit of magnetic stiffness depends upon both the penetration history of shielding currents distribution in HTS and applied magnetic field gradients. Furthermore, the influence of the physical parameters, such as critical current density in HTS and applied magnetic field, on the limits of magnetic stiffness is investigated in detail. The obtained results display that magnetic stiffness decreases with the increasing of critical current density, since shielding currents have not penetrated into the large portion of the HTS. With the increase of applied magnetic field, the magnetic stiffness obtain a larger magnification factor. It is related to the increase of the shielding current penetration volume and the internal magnetic field in HTS.


2020 ◽  
Vol 116 (24) ◽  
pp. 244103
Author(s):  
Xiaodong Jiang ◽  
Josiah Rudge ◽  
Mahdi Hosseini

2019 ◽  
Vol 5 (4) ◽  
pp. 115-123
Author(s):  
Yuri F. Antonov

The superconducting levitation device comprises a stationary magnetic rail of permanent magnets and a cryostat on a vehicle with a second-generation high-temperature tape superconductor placed in the cryostat, folded in a stack or wound by a coil on a non-magnetic frame without electrical connection of the ends and the transport current. Cool tape high-temperature superconductor of the second generation, folded in a stack or wound on a non magnetic frame in the form of axisymmetric or track coil, without electric connections of the ends and a transport current, behaves as a massive sample of a superconductor and the Meissner Oxenfeld effect, the magnetic field created by the magnetic rail is displaced from the volume of the superconductor, causing the power of levitation and the vehicle hangs over the track structure. The high critical parameters of the second-generation high-temperature superconductor belt ensure efficient operation of the superconducting levitation device. Aim: To demonstration the technical feasibility and efficiency of creating a levitation unit based on the use of a second-generation high-temperature superconductor and permanent magnets made of rare earth metals. Methods: Calculations of the magnetic field distribution in the combination of a magnetic rail and a massive superconductor, preliminary design of the levitation unit and experimental studies on the model. Results: Experiments on a model of a superconducting levitation device confirmed the efficiency of this technical solution and its effectiveness. Conclusion: an original technical solution is proposed that allows to significantly improve the energy characteristics of the levitation node by using a second-generation high-temperature superconductor operating in a passive mode without a transport current, using the partial Meissner-Oxenfeld effect and the engagement of quantized magnetic flux strands at the pinning centers.


2019 ◽  
Vol 29 (5) ◽  
pp. 1-5
Author(s):  
Xinning Hu ◽  
Qiuliang Wang ◽  
Chunyan Cui ◽  
Hao Wang ◽  
Zhongming He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document