technical solution
Recently Published Documents





Souvik Sengupta

The undergraduate and postgraduate studies of colleges and universities in India have been affected badly amidst the lockdowns for COVID-19 pandemic. The Government has insisted to start the academic activity through online platforms. The biggest concern for the academic institutions now is to select an appropriate e-learning platform. This paper compares different features and facilities available in some widely used online platforms and analyze their suitability from the perspective of socio-economic constraints of students in India. A generic framework for conducting online classes is described that meets the special requirements of the unprivileged students. Some strategic plans to overcome the challenges are identified and suggested. A technical solution for implementation of time-bound assessment module is also proposed.

Jiří Jelínek ◽  
Jiří Čejka ◽  
Josef Šedivý

Intelligent transportation systems (ITS) are a today´s hot topic, especially in the context of the development of information technologies, which can be employed in transportation. Although the scope and the technical solution of these systems may vary, they are frequently based on VANET (Vehicular ad hoc network), i.e. a communication network, which is primarily generated among the moving subjects, which form ITS. Given the highly dynamic VANET, the questions are raised as to the data transmission. This paper is aimed to make a detail analysis of the communications within VANET using the simulation model, which includes the static infrastructure of ITS and to experimentally verify the impact of this infrastructure on the dynamics of information spreading in ITS. The authors present the results obtained from a few different scenarios, which have been tested.

Inventions ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 14
Victor Bolobov ◽  
Yana Vladimirovna Martynenko ◽  
Vladimir Voronov ◽  
Ilnur Latipov ◽  
Grigory Popov

The production, transportation, and storage of liquefied natural gas (LNG) is a promising area in the gas industry due to a number of the fuel’s advantages, such as its high energy intensity indicators, its reduced storage volume compared to natural gas in the gas-air state, and it ecological efficiency. However, LNG storage systems feature a number of disadvantages, among which is the boil-off gas (BOG) recovery from an LNG tank by flaring it or discharging it to the atmosphere. Previous attempts to boil-off gas recovery using compressors, in turn, feature such disadvantages as large capital investments and operating costs, as well as low reliability rates. The authors of this article suggest a technical solution to this problem that consists in using a gas ejector for boil-off gas recovery. Natural gas from a high-pressure gas pipeline is proposed as a working fluid entraining the boil-off gas. The implementation of this method was carried out according to the developed algorithm. The proposed technical solution reduced capital costs (by approximately 170 times), metal consumption (by approximately 100 times), and power consumption (by approximately 55 kW), and improved the reliability of the system compared to a compressor unit. The sample calculation of a gas ejector for the boil-off gas recovery from an LNG tank with a capacity of 300 m3 shows that the ejector makes it possible to increase the boil-off gas pressure in the system by up to 1.13 MPa, which makes it possible to not use the first-stage compressor unit for the compression of excess vapours.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 612
Răzvan-George Bărtuşică ◽  
Mădălin Mihai ◽  
Simona Halunga ◽  
Octavian Fratu

This paper presents a technical solution that addresses mission-critical communications by extending the radio frequency coverage area using a flexible and scalable architecture. One of the main objectives is to improve both the reaction time and the coordination between mission-critical practitioners, also called public protection and disaster relief users, that operate in emergency scenarios. Mission-critical services such as voice and data should benefit from reliable communication systems that offer high availability, prioritization and flexible architecture. In this paper, we considered Terrestrial Trunked Radio (TETRA), the mobile radio standard used for mission-critical communications, as it has been designed in this respect and is widely used by first responder organizations. Even if RF coverage is designed before network deployment and continuously updated during the lifetime of the technology, some white areas may exist and should be covered by supplementary base stations or repeaters. The model presented in this paper is an optical repeater for TETRA standard that can offer up to 52.6 dB downlink, 65.6 dB uplink gain and up to 3.71 km coverage distance in a radiating cable installation scenario. The design in not limited, as it can be extended to several different mobile radio standards using the same principle. Flexibility and scalability attributes are taken into consideration, as they can build a cost-effective deployment considering both capital and operational expenditures.

2022 ◽  
Vol 1 (15) ◽  
pp. 171-174
Andrey Savenkov ◽  
Viktorya Kolomiets

The article considers a technical solution for the introduction of pozzolan additives into the cement after grinding clinker. Such additives are the fly ash of the CHP and ash from the ash dump. The use of ash in the composition of cement reduces its cost and energy intensity of its production

2022 ◽  
Vol 11 (1) ◽  
pp. 38
Qiong Luo ◽  
Hong Shu ◽  
Zhongyuan Zhao ◽  
Rui Qi ◽  
Youxin Huang ◽  

The evaluation of community livability quantifies the demands of human settlement at the micro scale, supporting urban governance decision-making at the macro scale. Big data generated by the urban management of government agencies can provide an accurate, real-time, and rich data set for livability evaluation. However, these data are intertwined by overlapping geographical management boundaries of different government agencies. It causes the difficulty of data integration and utilization when evaluating community livability. To address this problem, this paper proposes a scheme of partitioning basic geographical space into grids by optimally integrating various geographical management boundaries relevant to enterprise-level big data. Furthermore, the system of indexes on community livability is created, and the evaluation model of community livability is constructed. Taking Wuhan as an example, the effectiveness of the model is verified. After the evaluation, the experimental results show that the livability evaluation with reference to our basic geographic grids can effectively make use of governmental big data to spatially identify the multi-dimensional characteristics of a community, including management, environment, facility services, safety, and health. Our technical solution to evaluate community livability using gridded basic urban geographical data is of large potential in producing thematic data of community, constructing a 15-min community living circle of Wuhan, and enhancing the ability of the community to resist risks.

2021 ◽  
Bohuslav Slánský ◽  
Vit Šmilauer ◽  
Jiří Hlavatý ◽  
Richard Dvořák

A jointed plain concrete pavement represents a reliable, historically proven technical solution for highly loaded roads, highways, airports and other industrial surfaces. Excellent resistance to permanent deformations (rutting) and also durability and maintenance costs play key roles in assessing the economic benefits, rehabilitation plans, traffic closures, consumption and recycling of materials. In the history of concrete pavement construction, slow-to-normal hardening Portland cement was used in Czechoslovakia during the 1970s-1980s. The pavements are being replaced after 40-50 years of service, mostly due to vertical slab displacements due to missing dowel bars. However, pavements built after 1996 used rapid hardening cements, resulting in long-term surface cracking and decreased durability. In order to build durable concrete pavements, slower hardening slag-blended binders were designed and tested in the restrained ring shrinkage test and in isothermal calorimetry. Corresponding concretes were tested mainly for the compressive/tensile strength evolution and deicing salt-frost scaling to meet current specifications. The pilot project was executed on a 14 km highway, where a unique temperature-strain monitoring system was installed to provide long-term data from the concrete pavement. A thermo-mechanical coupled model served for data validation, showing a beneficial role of slower hydration kinetics. Continuous monitoring interim results at 24 months have revealed small curling induced by drying and the overall small differential shrinkage of the slab.

2021 ◽  
Vol 16 ◽  
pp. 91-108
Danutė Bacevičiūtė

This article opposes the attempts to marginalize ethical issues and defend the thesis of technosphere as an autonomous phenomenon in the Anthropocene. The author points out that by evading the question of ethical perspective and responsibility, the technological activity and its trace are naturalised, and any ethical decision is therefore turned into a technical decision. The comparison of the positions of two philosophers of technology (Hans Jonas and Bruno Latour) enables us to reflect on how technology mediates the constitution of the subject of responsibility in the tension of global and local perspectives. The article shows that Jonas’ “heuristics of fear” leads to the conscious practice of asceticism and the collective control of technical power, while Latour leaves open a possibility of talking about the shared action of a multitude of hybrid actors, in which both the ethical solution is already “contaminated” with the technical and the technical solution retains the trace of the ethical. By using the example of the reverse vending machine, it is shown how ethical motivation is inscribed into technical media, which uses the technological accumulation to link global and local perspectives for environmental purposes.

M. I. Korabelnikov ◽  
S. N. Bastrikov ◽  
N. A. Aksenova ◽  

The analysis of the nonproductive time when drilling wells is conducted in the paper. it is established that the most of it is associated with the accidents and complications, with the main share (60%)-seizures. The statistical analysis of the reasons for the occurrence of seizures and the effectiveness of methods for their elimination is presented. A drill string disconnector (RBC) developed at the Tyumen Industrial University is proposed for unscrewing drill pipes and freeing them from trapped pipes. Keywords: well; drill pipes; accidents; seizure; drilling tool; drill string break.

2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 38-46
Vladimir Burlaka ◽  
Elena Lavrova ◽  
Svetlana Podnebennaya ◽  
Vitaliy Ivanov ◽  
Serhii Burikov

This paper proposes a circuit solution and a power source control algorithm for semi-automatic AC welding with improved energy and weight-size characteristics. A distinctive feature of the designed source is the absence of an input rectifier: welding is carried out with a high-frequency alternating current. That has made it possible to significantly reduce power losses in the source, as well as provide the possibility of implementing induction heating by connecting an inductor to the source output. Another distinctive feature of the designed source is an increased power factor and a reduced level of higher harmonics of the current consumed. The power factor of the described source reaches 0.94 against 0.5÷0.7 for sources equipped with a conventional rectifier with capacitive smoothing. The designed source's composition includes a power supply system for the wire feed drive with speed stabilization due to positive feedback on the motor current. That has made it possible to ensure the stable operation of the drive in a wide range of speeds. A model has also been developed of a flux wire welding torch containing a feed drive and a coil with a wire (up to 100 mm in diameter), placed, in order to reduce the size, in the handle of the torch. In addition to the welding function, the source makes it possible to solve the tasks related to induction heating and/or hardening of small parts; to that end, a compact inductor is connected to its output. Tests of the source showed the feasibility of the proposed ideas and circuit solutions. The dimensions of the source are 190×107×65 mm; weight, 1.4 kg; output current, up to 120 A. The proposed technical solution enables the construction of small-sized, lightweight, universal, easy-to-use power supplies for semi-automatic welding with the option of induction heating

Sign in / Sign up

Export Citation Format

Share Document