Strong Law of Large Numbers for a Function of the Local Times of a Transient Random Walk in $${\mathbb {Z}}^d$$
Abstract For an arbitrary transient random walk $$(S_n)_{n\ge 0}$$ ( S n ) n ≥ 0 in $${\mathbb {Z}}^d$$ Z d , $$d\ge 1$$ d ≥ 1 , we prove a strong law of large numbers for the spatial sum $$\sum _{x\in {\mathbb {Z}}^d}f(l(n,x))$$ ∑ x ∈ Z d f ( l ( n , x ) ) of a function f of the local times $$l(n,x)=\sum _{i=0}^n{\mathbb {I}}\{S_i=x\}$$ l ( n , x ) = ∑ i = 0 n I { S i = x } . Particular cases are the number of visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function $$f(i)={\mathbb {I}}\{i\ge 1\}$$ f ( i ) = I { i ≥ 1 } ; $$\alpha $$ α -fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to $$f(i)=i^\alpha $$ f ( i ) = i α ; sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where $$f(i)={\mathbb {I}}\{i=j\}$$ f ( i ) = I { i = j } .