light intensification
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 8 ◽  
Author(s):  
Hao Yang ◽  
Jian Cheng ◽  
Zhichao Liu ◽  
Qi Liu ◽  
Linjie Zhao ◽  
...  

Abstract To determine whether a potassium dihydrogen phosphate (KDP) surface mitigated by micro-milling would potentially threaten downstream optics, we calculated the light-field modulation based on angular spectrum diffraction theory, and performed a laser damage test on downstream fused silica. The results showed that the downstream light intensification caused by a Gaussian mitigation pit of 800 μm width and 10 μm depth reached a peak value near the KDP rear surface, decreased sharply afterward, and eventually kept stable with the increase in downstream distance. The solved peak value of light intensification exceeded 6 in a range 8–19 mm downstream from the KDP rear surface, which is the most dangerous for downstream optics. Laser damage sites were then induced on the fused silica surface in subsequent laser damage tests. When the distance downstream was greater than 44 mm with a downstream light intensification of less than 3, there were no potential damage threats to downstream optics. The study proves that a mitigated KDP surface can cause laser damage to downstream optical components, to which attention should be paid in an actual application. Through this work, we find that the current manufacturing process and the mitigation index still need to be improved. The research methods and calculation models are also of great reference significance for related studies like optics mitigation and laser damage.


Author(s):  
Zhaoyang Jiao ◽  
Mingying Sun ◽  
Lei Ren ◽  
Yajing Guo ◽  
Rong Wu ◽  
...  

2017 ◽  
Vol 56 (10) ◽  
pp. 1 ◽  
Author(s):  
Huapan Xiao ◽  
Hairong Wang ◽  
Zhi Chen ◽  
Guanglong Fu ◽  
Jiuhong Wang

2014 ◽  
Author(s):  
Linas Smalakys ◽  
Gintarė Batavičiūtė ◽  
Egidijus Pupka ◽  
Andrius Melninkaitis

2013 ◽  
Author(s):  
ChingSeong Tan ◽  
D. Patel ◽  
X. Wang ◽  
D. Schlitz ◽  
P. S. Dehkordi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document