rear surface
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 54)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 392
Author(s):  
Muhammad Quddamah Khokhar ◽  
Shahzada Qamar Hussain ◽  
Muhammad Aleem Zahid ◽  
Duy Phong Pham ◽  
Eun-Chel Cho ◽  
...  

We report on the tunnel oxide passivated contact (TOPCon) using a crystalline nanostructured silicon-based layer via an experimental and numerical simulation study. The minority carrier lifetime and implied open-circuit voltage reveals an ameliorated passivation property, which gives the motivation to run a simulation. The passivating contact of an ultra-thin silicon oxide (1.2 nm) capped with a plasma enhanced chemical vapor deposition (PECVD) grown 30 nm thick nanocrystalline silicon oxide (nc-SiOx), provides outstanding passivation properties with low recombination current density (Jo) (~1.1 fA/cm2) at a 950 °C annealing temperature. The existence of a thin silicon oxide layer (SiO2) at the rear surface with superior quality (low pinhole density, Dph < 1 × 10−8 and low interface trap density, Dit ≈ 1 × 108 cm−2 eV−1), reduces the recombination of the carriers. The start of a small number of transports by pinholes improves the fill factor (FF) up to 83%, reduces the series resistance (Rs) up to 0.5 Ω cm2, and also improves the power conversion efficiency (PEC) by up to 27.4%. The TOPCon with a modified nc-SiOx exhibits a dominant open circuit voltage (Voc) of 761 mV with a supreme FF of 83%. Our simulation provides an excellent match with the experimental results and supports excellent passivation properties. Overall, our study proposed an ameliorated knowledge about tunnel oxide, doping in the nc-SiOx layer, and additionally about the surface recombination velocity (SRV) impact on TOPCon solar cells.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4416
Author(s):  
Yanyan Lin ◽  
Huaguan Li ◽  
Zhongwei Zhang ◽  
Jie Tao

The weak interface performance between metal and composite (IPMC) makes the composite materials susceptible to impact load. Aluminum/glass fiber/polypropylene (Al/Gf/PP) laminates were manufactured with the aluminum alloy sheets modified by nitrogen plasma surface treatment and the phosphoric acid anodizing method, respectively. FEM models of Al/Gf/PP laminates under low-velocity impact were established in ABAQUS/Explicit based on the generated data including the model I and II interlaminar fracture toughness. Low-velocity impact tests were performed to investigate the impact resistance of Al/Gf/PP laminates including load traces, failure mechanism, and energy absorption. The results showed that delamination was the main failure mode of two kinds of laminates under the impact energy of 20 J and 30 J. When the impact energy was between 40 J and 50 J, there were metal cracks on the rear surface of the plasma pretreated specimens, which possessed higher energy absorption and impact resistance, although the integrity of the laminates could not be preserved. Since the residual compressive stress was generated during the cooling process, the laminates were more susceptible to stretching rather than delamination. For impact energy (60 J) causing the through-the-thickness crack of two kinds of laminates, plasma pretreated specimens exhibited higher SEA values close to 9 Jm2/kg due to better IPMC. Combined with the FEM simulation results, the interface played a role in stress transmission and specimens with better IPMC enabled the laminates to absorb more energy.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7611
Author(s):  
Essam R. I. Mahmoud ◽  
Hamad Almohamadi ◽  
Abdulrahman Aljabri ◽  
Sohaib Z. Khan ◽  
Ahmad N. Saquib ◽  
...  

Friction Stir Processing (FSP) was used to fabricate metal matrix composite, based on steel and reinforced with nano-sized yttrium oxide powder. The powder was packed in a narrow longitudinal groove of 2 mm depth and 1 mm width cut in the steel plate’s rear surface. Different rotation speeds of 500–1500 rpm were used, at a fixed traveling speed of 50 mm.min−1. Single-pass and two passes, with the same conditions, were applied. The direction of the second pass was opposite to that of the first pass. After the first pass, complete nugget zones were obtained when the rotation speeds were more than 700 rpm with some particles agglomeration. The added particles showed as narrow elliptical bands, with a band pitch equal to the rotation speed over traveling speed. Performing the second FSP pass in the opposite direction resulted in better particles distributions. Almost defect-free composite materials, with homogenously distributed yttria nano-sized particles, were obtained after two passes when rotation speeds more than 700 rpm were used. The resulting steel matrix grains were refined from ~60 μm of the base metal to less than 3 μm of the processed nugget zone matrix. The hardness and the tensile strength of the fabricated materials improved almost two-fold over the base metal. Uniform microhardness values within the nugget areas were observed at higher rotational speeds. The ductility and toughness of the fabricated composites were reduced compared to the base metal.


Author(s):  
G. Khavin

Numerous experimental studies in the field of mechanical processing of composite materials for individual materials and tools made it possible to formulate particular models for describing tool wear, changing its microgeometry during operation and predicting durability. There are significant difficulties in measuring current wear and recalculation in mathematical models, since they include a large number of parameters. This does not allow for simple technical control of cutting edge wear and predicting tool life. The formulation of the wear-contact problem of the tool tip and the material interaction during turning of reinforced composite plastics is presented. Based on known studies, it is assumed that wear occurs along the flank of the tool, and is accompanied by an asymmetric change in the geometry of its tip. A model of abrasive wear during sliding of a tool tip rear surface with a polymer composite reinforcement material and fracture products is considered. It is assumed that the wear law is hereditary and there is a linear dependence of the wear rate on the rate of contact interaction and pressure. Shear stresses through the contact pressure and the coefficient of friction nonlinearly depend on the operating time of the tool due to the change due to wear in the geometric shape of the tool and the processing parameters of the product over time. The volumetric wear factor is a tool run time function. It reflects the fact that the interaction of the “tool-workpiece” pair with time should, as it were, forget about the running-in stage, which has a high wear rate, and the fact that the dependence of wear on the load (contact pressure) is characterized by the presence of aftereffect. A simplified relationship is obtained for the wear law under the assumption that there is no change in the coefficient of friction, temperature and contact pressure over time. Ultimately, to describe the wear law and predict the tool life, it is necessary to know a number of empirical constants, the values of which are determined by the change in the microgeometry of the tool tip during interaction during cutting.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012024
Author(s):  
Hasan Talić

Abstract Wood as a material has its own peculiar role during processing due to its characteristics which depend on a number of factors. Therefore, wood-based plate materials tend to encounter the same issues. The creation of the continuous cuttings is conditioned by the strength as it is being cut orthogonally. The cutting force is shown as the sum of the forces for plastic deformation, the force for overcoming the work of the friction force on the front and rear surface of the tool and the force for creating a new surface. Each of the forces is connected to appropriate mechanical features of wood. Examining the mechanical properties of wood, which can be used to calculate the required power to create a new surface, demonstrates the dependence of cutting power on the type of wood, cutting speed, and wood moisture.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4849
Author(s):  
Chan Hyeon Park ◽  
Jun Yong Kim ◽  
Shi-Joon Sung ◽  
Dae-Hwan Kim ◽  
Yun Seon Do

In this paper, we propose an optimized structure of thin Cu(In,Ga)Se2 (CIGS) solar cells with a grating aluminum oxide (Al2O3) passivation layer (GAPL) providing nano-sized contact openings in order to improve power conversion efficiency using optoelectrical simulations. Al2O3 is used as a rear surface passivation material to reduce carrier recombination and improve reflectivity at a rear surface for high efficiency in thin CIGS solar cells. To realize high efficiency for thin CIGS solar cells, the optimized structure was designed by manipulating two structural factors: the contact opening width (COW) and the pitch of the GAPL. Compared with an unpassivated thin CIGS solar cell, the efficiency was improved up to 20.38% when the pitch of the GAPL was 7.5–12.5 μm. Furthermore, the efficiency was improved as the COW of the GAPL was decreased. The maximum efficiency value occurred when the COW was 100 nm because of the effective carrier recombination inhibition and high reflectivity of the Al2O3 insulator passivation with local contacts. These results indicate that the designed structure has optimized structural points for high-efficiency thin CIGS solar cells. Therefore, the photovoltaic (PV) generator and sensor designers can achieve the higher performance of photosensitive thin CIGS solar cells by considering these results.


Author(s):  
Rajashree Borah ◽  
Siddhant Jain ◽  
Dyuman V. Joshi ◽  
Ujjwal K. Saha

Abstract In the present study, two-dimensional unsteady, incompressible flow around a square body that is being transformed into a vertex oriented towards the flow configuration of a triangular body is numerically investigated at Re =100 using ANSYS FLUENT 19.0 software. The purpose is to explore the effect of this transformation on the wake characteristics of a square body with l/d = 1 to a triangular body with l/d = 0; where l is the length of lateral and front surface, and d is the body height. The effect on the flow behavior caused by the leading-edge transformation from the prospect of wake width, recirculation length and stagnation pressure difference is discussed. It is seen that as the l/d ratio decreases, the vortex strength increases which is attributed to the higher stagnation pressure difference value resulting in more intense rolling of the shedding vortex and a smaller wake width. For lower l/d, the fluid traverses a longer distance along the lateral surfaces resulting in greater loss of momentum and hence the lower vortex formation length. The mean drag coefficient is found to be minimum for l/d = 0.75 with stagnation pressure difference and recirculation length being the more dominating factor on this variation. The flow in all the cases separates at the rear surface and the general trend of decrease in drag coefficient with decrease in wake width is not followed. However, such modification leads to better aerodynamic outcome by weakening the periodic drag and lift forces.


Solar Energy ◽  
2021 ◽  
Vol 220 ◽  
pp. 590-597
Author(s):  
Nour El I. Boukortt ◽  
Salvatore Patanè ◽  
Mabrouk Adouane ◽  
Rawan AlHammadi

Sign in / Sign up

Export Citation Format

Share Document